Curriculum for Dual Degree Programme B. Tech. (Mechanical Engineering) - M. Tech. (Manufacturing Engineering) - 4th and 5th year

	SEMESTER - VII						
Sl. No.	Course No.	Subject Name	L-T-P	Credit	Contact Hour		
1	ME6L301	Machining Science	3-1-0	4	4		
2	ME6L302	Advanced Manufacturing Processes-I	3-1-0	4	4		
3	ME4LXXX / ME6LXXX	Elective - 2	3-0-3	5	6		
4		Breadth - 2	3-0-0	3	3		
5	ME4T001	Industrial Training Defense	0-0-0	2	3		
6	ME4D001	Project – Part 1	0-0-0	4	0		
7	ME6P351	Advanced Manufacturing Laboratory-I	0-0-3	2	3		
		Total L-T-P and Credit		24	23		
		SEMESTER - VIII					
Sl. No.	Course No.	Course Name	L-T-P	С	Contact Hour		
1	ME6L303	Advanced Manufacturing Processes-II	3-1-0	4	4		
2	ME6LXXX	Elective - 3	3-0/1-0	3/4	3/4		
3		Breadth - 3	3-0-0	3	3		
4		Breadth - 4	3-0-0	3	3		
5	ME4D002	Project – Part 2	0-0-0	6	0		
6	ME6P352	Advanced Manufacturing Laboratory-II	0-0-3	2	3		
		Total L-T-P and Credit		21/22	16/17		
		SEMESTER - IX					
Sl. No.	Course No.	Subject Name	L-T-P	Credit	Contact Hour		
1	ME6LXX X	Elective –4	3-0/1-0	3/4	3/4		
2	ME6S301	Seminar	0-0-0	2	0		
3	ME6D301	Thesis– Part 1	0-0-0	12	0		
		Total		17/18	3/4		
		SEMESTER – X					
1	ME6LXXX	Elective – 5	3-0/1-0	3/4	3/4		
2	ME6D302	Thesis–Part 2	0-0-0	13	0		
		Total		16	3		
		G. Total		222/226	201/207		

List of Electives

Elective – 2 (Semester VII)				
Subject Name	Course No.	L-T-P	Credit	Contact Hour
Computer Aided Design and Manufacturing	ME4L002	3-0-3	5	6
Design and Experimental Analysis of welded Joints	ME6L311	3-0-3	5	6
Metal Forming Theory and Practice	ME6L312	3-0-3	5	6

Elective – 3 & 5	(Semester VII	I & X)		
Advanced Casting Processes	ME6L313	3-0-0	3	3
Solid state joining processes	ME6L314	3-1-0	4	4
Quality Engineering and Management	ME6L315	3-0-0	3	3
Surface Engineering	ME6L317	3-0-0	3	3
Numerical Methods for Manufacturing	ME6L318	3-1-0	4	4
Supply Chain Management	ME6L319	3-0-0	3	3
Digital Manufacturing	ME6L320	3-1-0	4	4
Additive Manufacturiing	ME6L331	3-0-0	3	3
Factory Automation	ME6L332	3-0-0	3	3
Soft Computing and Application	ME6L060	3-1-0	4	4

Elective – 4 (Semester IX)						
Manufacturing Planning and Control	ME6L316	3-0-0	3	3		
Advanced Tooling Design	ME6L321	3-0-0	3	3		
Metrology and Computer Aided Inspection	ME6L322	3-1-0	4	4		
Operations Management	ME6L323	3-0-0	3	3		
Machine Tool Design	ME6L324	3-1-0	4	4		
Lasers in Manufacturing	ME6L327	3-1-0	4	4		
Precision and Micro Manufacturing	ME6L329	3-1-0	4	4		
Robotics and Automation	ME6L013	3-0-0	3	3		

Syllabi of Core Courses

Subject Code: ME6L301	Subject Name: Machining Science	L-T-P: 3-1-0	Credit: 4		
Pre-Requisite(s):					
Course objectives:					
 The Primary objective of the course is to make the students capable enough to analyze the conventional machining processes using principles of plasticity and shear, taking into consideration the process parameters such as speed, feed and depth of cut, tool geometry, materials and use of coolant. Students will be able to analyze the mechanical and thermal aspect of conventional machining through the models based on the laws of physics. They will also learn about the types of tool wears and their effect on the process performance and techniques to overcome these issues. 					
Course content: Geometry of cutting tools: Turning, milling and drilling in different reference systems; Mechanism of chip formation by single point tools, drills and milling cutters; chip breakers; Estimation of cutting force: Theoretical and experimental determination; Oblique cutting: Direction of chip flow, Merchant's solution for oblique cutting; Source of heat generation in machining, Measurement and modeling of cutting temperature, cutting fluids and their characteristics; Cutting tools: Essential properties and various tool materials, Mechanisms of tool wear and failure; Economics of machining process; Vibration and chatter in machining and their remedy; Surface roughness and Surface integrity, Features used assessing surface integrity; Grinding: Mechanism of chip formation; Modelling of force and specific energy; Temperaturemeasurement and thermal modeling; and Assessment of residual stress in machining, grinding; instruments and technique of measurement.					
Assessment of residual stress in machining, grinding; instruments and technique of measurement. <u>Recommended Books:</u> Metal Cutting : Theory And Practice By A Bhattacharyya, New central book agency, 2010 Metal Cutting Principles By M C Saw, Oxford University Press, 2002 Machining and Machine Tools By A. B. Chattopadhyay, Wiley India, 2011 Fundamentals of Machining and Machine Tools By Boothryd and Knight, 2 nd ed., Markel Dekker Inc, 1989 Fundamentals of Machining Processes: Conventional and Nonconventional By Hassan Abdel- Gawad El-Hofy, CRC Press, 2006. Manufacturing Processes By J. P. Kaushish, PHI Learning, 2010 Manufacturing Processes 1: Cutting By Fritz Klocke, Aaron Kuchle Springer, 2011					

	ME6L302 Processes-I	Subject Code: Subject Name: Advanced Manufacturing L-T-P: 3-1-0 Credit: 4	Subject Code: ME6L302	Subject Name: Advanced Manufacturing Processes-I	L-T-P: 3-1-0	Credit: 4
--	---------------------	---	--------------------------	---	--------------	-----------

Course objectives:

- The primary objective of this course is to make students learn about various advanced casting, welding and forming processes and their application. This will help them to build up the idea about suitability and requirement of each process for specific operations, mainly for precision manufacturing with dimensional and geometrical complexity.
- The students also learn the processing of advanced materials, alloys, MMCs as well as polymers and composites due to their increasing demand in various applications. The pre-requisite of the course would be knowledge of primary manufacturing processes, casting, forming and welding.
- Students will also learn the advancements in powder metallurgy techniques andtheir applications, so that in future they can apply those ideas for manufacturing of components using advanced materials and MMCs, which are otherwise difficult to produce using conventional techniques.

Course content:

Advanced metal casting techniques, Gating and risering, Nucleation, grain growth, and solification; Advanced Welding techniques: Arc welding through pulsing, Cold metal transfer welding, Plasma arc welding; Electron Beam welding; Laser beam welding etc.;

Advanced forming techniques, High energy rate forming, Superplastic forming; Incremental forming;

Powder metallurgy: Powdered metals and fabrication procedures, Preparation of powders, Compacting and sintering, Hot and cold pressing (HIP, CIP); and Polymers and composites processing.

Recommended Books:

Metal casting: Computer Aided Design and Analysis by B. Ravi, PHI Learning Pvt. Ltd. 2010 Advanced Welding Processes: Technologies and process control by J Norrish, Woodhead Publishing, 2006

Advanced Methods in Material Forming by D.Banabic, Springer, 2007

Powder Metallurgy: Science, Technology and Applications, P.C. Angelo, R. Subramanian, PHI Learning Pvt. Ltd. 2008

Subject Code: ME6L303	Subject Name: Advanced Manufacturing Processes-II	L-T-P: 3-1-0	Credit: 4

Pre-Requisite(s): Advanced Manufacturing Processes-I

Course objectives:

- The object of this course is to provide an in-depth knowledge on various non-conventional machining processes, where students will learn the physics behind those processes along with the advantages, limitations and industrial applications.
- This will help them to build up the idea about suitability of each process for specific operations, mainly in precision, micro- and nano fabrication, machining of complex geometries etc.
- This course also contains various hybrid machining processes, the knowledge of which is essential for future research on machining of various morden high strength metals and polymers, where the conventional process alone can't serve the purpose.
- Students will also be familier with various advanced coating techniques and their mechanism. This helps the students to develop knowlege to implement those techniques for micro- or nano-coating on various components, like cutting tools, turbine blades etc.

Course content:

Introduction - Classification and capability based on materials;

Mechanical machining – Types: Ultrasonic machining (USM), Abrasive Jet Machining (AJM), Abrasive Flow Machining (AFM), Water Jet Machining (WJM) –Principle, analysis and applications;

Electro chemical machining - Chemical material removal – Types: Electro chemical machining (ECM), Electro chemical drilling (ECD), Electro chemical honing (ECH), Shaped tube electrolytic machining - Principle, analysis and applications;

Thermo electrical machining – Types: Electrical discharge machining (EDM), Electrical discharge wire cutting (EDWC) - Principle, analysis and applications;

Electron beam machining (EBM); Plasma Arc Machining (PAM); Ion Beam Machining (IBM) - Principle, analysis and applications;

Laser beam machining (LBM) - Principle, analysis and applications; and

Hybrid machining processes, their advantages: ECG, ECDG, Laser assisted hybrid machining etc. Advanced coating processes: Physical and chemical vapour deposition, Thermal spray techniques such as plasma spraying, High and low velocity oxy-fuel coating technique, Pulsed TIG coating etc.

Recommended Books:

Nontraditional Manufacturing Processes By Gary F. Benedict, CRC Press, 1987

Advanced Machining Processes By Prof. Vijay Kumar Jain, Allied Publisher, 2007.

Machining Science by Ghosh and Mallik

Advanced Analysis of Nontraditional Machining By Hong Hocheng, Hung-Yin Tsai, Paperback, 2012.

Nonconventional Machining BY P. K. Mishra Narosa Publishing House, 1997.

Advanced Machining Processes: Nontraditional and Hybrid Machining Processes By Hassan El-Hof, Mc Graw Hill, 2005.

Manufacturing Processes By J. P. Kaushish, PHI Learning, 2010.

Coating and surface treatment systems for metals: a comprehensive guide to selection, by Joseph Edwards, ASM Intl., 1997

Semester – VII (Electives-II)

Subject Code:	Subject Name: Computer Aided Design &	L-T-P: 3-0-3	Credit: 5
ME4L002	Manufacturing		

Pre-Requisite(s): Engineering Drawing & Graphics

Overview of CAD, Software and hardware requirements of CAD, CAD applications, solid modeling, wire frame modeling, B-rep, CSG approaches, Transformations and projections, Mathematical representation of curves and surfaces, Cubic, Bezier and B-spline curves and properties; Introduction to NC, components, advantages and limitations of NC, CNC, DNC, part programming, adaptive control, group technology, computer aided process planning, FMS and CIM.

Laboratory

Generation of various 3D models through protrusion, revolve and shell sweep and their assembly modelling using any of the CAD modelling software. Determination of deflection and stresses in 2D and 3D trusses and beams. Determination of principal and von-mises stresses in plane stress, plane strain and axi-symmetric components. Determination of stresses in 3D and shell structures. Estimation of natural frequencies and mode shapes in beams using analysis package. Generation of part programs on CNC turning and milling machines to produce free form and sculptured surfaces using CAM package.

Recommended Books:

Zimmers & Groover P., CAD/CAM, PE/PHI Publishers, 1984.

Zeid I., CAD / CAM Theory and Practice, Tata McGraw – Hill, 1991.

Rao P.N., CAD/CAM principles and applications, Tata McGraw – Hill, 2004.

Groover, Automation, Production systems & Computer integrated Manufacturing, Pearson Education, 1987.

Amirouche F., Principles of Computer Aided Design and Manufacturing, Pearson Education, 2004. Seames W.S., Computer Numerical Control Concepts and programming, Thomson Learning, 1990.

Subject Code:	Subject Name: Design and Experimental	L-T-P: 3-0-3	Credit: 5
ME6L311	Analysis of Welded Joints		

Pre-Requisite(s): Casting, Welding & Forming

Introduction to design, engineering properties of steels, weldability of structural steels, carbon equivalent, fatigue and creep properties of welded joints, theories of failures. Type of welds and weld joints, description of welds terminology, welding symbols, edge preparation, sizing of welds in structure, type of connections in welded structures, combined groove and fillet weld connections. Weld calculations for lap, butt and fillet welds, analysis of connections for direct tension or compression and shear loading conditions, resistance to moment by combined tension and compression. Introduction to Fatigue, mechanism of fatigue fracture, residual fatigue strength, factors affecting fatigue life, design of welded joints for fatigue loading, fatigue behaviour of hollow section joints, methods for improving the fatigue strength of welded joints, reliability analysis and safety factors applied to fatigue design with reference to fracture toughness. Heat flow in welding, effect of welding parameters on heat distribution, calculation of peak temperature, weld thermal cycle, cooling rate and solidification time, residual stress distribution, influence of residual stress in static and dynamic loading, introduction to stress corrosion.

<u>Laboratory</u>

Testing of weld tensile strength, bend strength, impact strength, magnetic particle testing, X-ray testing, residual stress determination, weld micro hardness, weld distortion study of butt joint, weld bead geometry study

Recommended Books:

1. Fuchs, H. O. and Stephen, R I., "Metal Fatigue in Engineering", John Wiley & Sons. 2000.

- 2. Gray, T. G. F. and Spence, J., "Rational Welding Design", Butterworths. 1992.
- 3. "Welding Hand Book", Vol. 2 & 3, 9th Ed., American Welding Society. 2001.

4. Dieter, G., "Mechanical Metallurgy", McGraw Hill. 1988.

5. Messler, R.W. Jr., "Principles of Welding", John Wiley & Sons. 1999.

Subject Code:	Subject Name: Metal forming theory and practice	L-T-P: 3-0-3	Credit: 5
ME6L312			

Pre-Requisite(s): Casting, Welding & Forming

Introduction: stress/strain, strain-rate characteristics of materials, yield criteria of metals, classification of metal working processes, formability and theory of sheet metal working, friction and lubrication in metal working operation, theories of friction and lubrication; assessment of friction at interface. Process analysis: various methods of analyzing the metal working processes (slipline field theory; upper bound solution; stab methods). Mechanics of forming processes: rolling- determination of rolling pressure, roll separating force, driving torque and power, and power loss in bearings; forging determination of forces in strip forging and disc forging; drawingdetermination of force and power, determination of maximum allowable reduction; deep drawing force analysis, analysis of tube drawing process with fixed and moving mandrel, tandem tube drawing; bending- determination of work load and spring back; extrusion- determination of work load from stress analysis and energy consideration, power loss, hydrostatic extrusion; punching and blanking- mode of metal deformation and failure, two-dimensional deformation model and fracture analysis, determination of working force. Hydrostatic extrusion: comparison with conventional extrusion; pressure required to extrude, variables affecting the process. High speed forming: classification, comparison of low and high speed forming operation problems in high speed forming operation, introduction to high forming process such as explosive forming, electrical and mechanical high speed forming techniques.

Laboratory

Metal froming of sheet by hydraulic press, die design for drawing a cup, tube spinning, coining and blanking operation by hydraulic press, rolling of strips of ferrous and non-ferrous materials, forward and backward extrusion example study, sheet forming by line heating.

Recommended Books:

Manufacturing Science By Ghosh and Mallik, East West Publisher, 2nd Ed., 2010

Metal Forming, Mechanics and Metallurgy By W F Hosford & R M Caddell, Cambridge University Press, 4th Ed., 2011

Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications By David Rees, Butterworth-Heinemann, 1st Ed., 2006

Theory of Plasticity By J. Chakrabarty, McGrawHill Book Co., International Edition, 1987 Principle of Industrial Metal Working Processes By G. W. Rowe, CBS Publishers, 2005 Mechanical Metallurgy By George E. Dieter, McGraw Hill higher education, 3rd Ed., Indian ed., 2016

Metal Forming: Processes and Analysis By B. Avitzur, McGraw Hill Publication, 1968. The Mathematical Theory of Plasticity By Hill, R., Oxford, Clarendon Press, 1998. Finite element plasticity and metal forming analysis By G. W. Rowe, C. E. N. Sturgess, P. Hartley, I. Pillinger, Cambridge University Press, 1991.

Elective – III & V (Semester VIII & X)

Subject Code: ME61313	Subject Name: Advanced Casting Processes	L-T-P: 3-0-0	Credit: 3		
Pre-Requisite(s): Advan	ced Manufacturing Processess - I				
Course content:					
Features of casting problem	lem, A survey and scope of foundry industry. Soli	dification of pur	e metals		
and alloys, Nucleation a	nd growth in alloys, Solidification of actual castir	ngs, Progressive	and		
directional solidification	, Centerline feeding resistance, Rate of solidificat	ion, Chvorinov's	s Rule,		
Electrical analog of solidification problem, Fluidity- effects of various parameters on fluidity,					
Measurement of fluidity;					
Riser design methodologies, Risering of complex casting, Risering of alloy other than steel, Recent					
developments in riser design by the application of geometrical programming;					
Gating system design, The effects of gates on aspiration, Turbulence and dross trap, Recent trends.					
Pattern designing for lost wax, Lost foam casting, Single crystal casting ;					
Casting design considera	ations- recent trends;				
Selection and control of	melting furnaces, Boiling, refining and pouring, R	Recent trends in	cupola		
design; Review and criti	cal comparison of various established processes, r	ecent developm	ents e.g.		
low pressure and ferrous	die casting, High pressure molding, Full mold pre	ocess, Flaskless	molding,		
Hot and cold box moldir	ig, Ceramic shell molding, V-process, Continuous	casting, Squeez	ze and		
pressed casting, New cas	sting processes (Nishiyama process, Shaw process	, Anitoch proce	ss etc.);		
Residual stresses, Hot te	ars and cracks in castings, Stress relief, Defects an	id their causes a	nd		
remedies, various param	leters affecting surface finish and related defects e	e.g. rough castin	g, sand		
bumon sand bum-in and	metal penetration, Facing and wasnes, Mold Wall	movement, vap	bour		
diagolyad agaga in agatin	ion scabbing etc; Gases in metal- methods of enm	mation and com	.101 01		
Deview of V row and gas	gs, and	stront and ultrage	onio		
inspection Use of statist	ical quality control in foundry		JIIC		
	ical quality collutor ill foundry.				
Recommended Books					
Fundamentals of Metal (Casting By R A Flinn Addison Wesley Inc. Read	ling 1963			
Principles of Metal Cast	ing By R W Heine C R Loper and P C Rosenthal	Tata McGraw –	Hill		
1997.	ing by R w Heine, e R Loper and F e Rosential,		11111,		
Modern Manufacturing	Process Engineering By B W Niebel and A B Dra	per, McGraw Hi	ill, 1990.		
Metals Handbook-Metal	Casting, ASM, 1985.				
Foundry Technology By	Peter R Beeley, Butterworth-Heinemann, 2001.				
Principles of Foundry To	echnology By P L Jain, Tata Mc. Graw-Hill, 1999	•			

Subject Code:	Subject Name: Solid State Joining Processes	L-T-P: 3-1-0	Credit: 4			
ME6L314						
Pre-Requisite(s): Advan	ced Manufacturing Processess - I					
Course content:						
Fundamental forces invo	lved in joining; Mechanical fastening and integral	l attachment: us	ing			
mechanical forces, Adhe	sive bonding: using chemical forces, Welding: us	ing physical for	ces;			
Overview of fusion and	solid state welds, Fundamental principles of solid	state welding pr	ocesses,			
Classification of solid st	ate/non-fusion welding processes;					
Adhesive bonding as a joining process, General description of adhesive bonding, Cementing and						
mortaring as an adhesive joining process, The functions of adhesives, Mechanisms of adhesion,						
Failure in adhesive-bonded joints, Adhesive joint designs, Design criteria and analysis of adhesive						
joints;						
Friction welding process	Friction welding process, Application of friction welding process, Friction welding process					
parameters,Radial and or	rbital friction welding,Direct drive and inertia driv	ve friction weldi	ng,Study			
of friction welds, Joint qu	ality of friction welds;					
Overview of Friction Sti	r Welding (FSW) process principles, Welding tool	s used for FSW	,			
Parameters' effects; Mat	erials used with FSW, Thermomechanical aspect of	of FSW, Plastic				
deformation in relation t	o material properties, Material flow and property i	relationships of	the			
resultant FSW joint, Fric	ction stir processing (FSP), Process parameters of	FSP, Applicatio	n of FSW			
and FSP processes;		1				
Conventional diffusion,	Deformation diffusion, Resistance diffusion & con	ntinuous seam d	iffusion			
welding, Diffusion brazin	ng,Braze welding, Combined forming and diffusio	on welding,Solid	-state			
deposition welding proce	esses; and	1.1'				
Pressure non-fusion wel	ding processes: Cold welding processes, Pressure	gas welding pro	cess,			
Forge welding process, I	Coll welding, Explosion welding process.					
Decommonded Declar						
<u>Recommended Books:</u>	Structures Dy Massler Dobort W. Ir. Elsovier Dut	tomuonth Upino	monn			
	Structures by Messier Robert w. J1., Elsevier But	terwortii–fieme	mann,			
2004. Principles of welding By	Messler Robert W. Ir. WILEV-VCHVerlag Gm	bH & Co KGa/	\			
Weinheim 1999	Nessier Robert W. J., WILLI-Verrag On		1,			
Mathematical Simulation	and Computer Analysis of Thin Strip Rolling M	ill By V P Poluk	chin MIR			
Publishers 1975	r and computer r marysis of rinn strip Ronnig Wi					
Friction stir welding Fro	m basics to applications Edited by Daniela Lobwa	usser and Than				
Chen Woodhead Publish	ing India Pyt 1 td 2010					
Welding and Welding T	echnology By Little L Richard, McGraw Hill, 197	6.				
The Solid phase welding	of Metals By R F Tylecote. Edward Arnold Pub.	Ltd. 1968.				
1 2	, j j, <u></u>	,				

Subject Code:	Subject Name: Quality Engineering and	L-T-P: 3-0-0	Credit: 3	
ME6L315	Management			
Pre-Requisite(s):				
Course content:				
Statistical methods, Stati	stical interface in quality control, Process Capabi	lity;		
Economics of Quality Co	ontrol, Dimensions of Quality;			
Statistical Process Contr	ol, Control Charts for Variables and Attributes;			
Process design and impr	ovement with designed experiments, Acceptance	Sampling;		
ISO9000, Six sigma, Cas	se studies; and			
Reliability engineering,	Design of Experiment (DOE).			
Recommended Books:				
Total Quality Manageme	ent By D H Besterfiled, Pearson Education, 2014.			
Total Quality Management By Feigenbaum A.V.,, McGraw Hill, 1968.				
Oakland J.S., Total Quality Management, Butterworth – Heinemann Ltd., Oxford, 1993.				
Montgomery D.C., Statistical Quality Control, Wiley Pulication, 1985.				
Amitava Mitra, Fundamo	ental of Quality Control and improvement, Wiley	Publications, 19	993.	

Subject Code:	Subject Name: Surface Engineering	L-T-P: 3-0-0	Credit: 3
ME6L317			

Course content:

Concept and Importance, Classification of surface modification techniques, Advantages and their limitations;

Causes, types and consequences of surface degradation, Forms of wear – Adhesive, Abrasive, Surface fatigue, Corrosive, Fretting and erosive wear, Classical governing laws related to wear, Techniques to evaluate the wear damage;

Materials characteristics, their importance in surface engineering, Wear resistant materials, Selection of materials for engineering the surfaces for specific applications;

New coating concepts including multi-layer structures, Functionally gradient materials (FGMs), Intermetallic barrier coatings and Thermal barrier coating;

Principles and application of weld surfacing: SMAW, SAW, GMAW, Thermal spraying – Flame spraying, Electric arc spraying, Plasma spraying, Detonation gun spraying and High velocity oxy fuel spraying ;

Ion implantation, Chemical Vapour Deposition (CVD) and Physical Vapour Deposition (PVD), Carburizing, Nitriding, Plasma nitriding, Cyaniding;

Laser cladding, Alloying, Glazing, Laser and Induction hardening, Heat treatment of steel and remelting by Laser / TIG;

Microwave glazing;

Importanceof Different characterisation techniques – Physical, Mechanical and Functional characterisations, Surface finish, Microhardness, Strength and Tribological characterizations; Electro deposition and Electroless coatings; and

Pulsed Laser Deposition.

Recommended Books:

Surface Engineering of Metals: Principles, Equipment, Technologies By T.Burakowski and Wierzchoń T., CRC Press, Boca Raton, Florida, 1999.

Surface Engineering Casebook By J.S. Burnell-Gray and P.K.Datta (eds.), Woodhead Publishing Limited, Cambridge, England, 1996.

Engineering coatings - design and application By S. Grainger and J. Blunt (eds.), Abington Publishing, Cambridge, England, 1998.

Advanced Surface Coatings: a Handbook of Surface Engineering By D. S. Rickerby and A. Matthews (eds), Blackie, London,1991.

Coatings Tribology: Properties, Techniques and Applications in Surface Engineering By K. Holmberg and A. Matthews, Elsevier Science B.V., Amsterdam, 1994.

Subject Code:	Subject Name: Numerical Methods for	L-T-P: 3-1-0	Credit: 4
ME6L318	Manufacturing		

Pre-Requisite(s): Finite Element Methods in Engineering

Course content:

Introduction to linear and nonlinear problems;

Geometric non-linearity: Linear buckling or Eigen buckling, pre-stress and stress stiffening, nonlinear buckling and imperfections, incremental equation of equilibrium, nonlinear straindisplacement matrix, tangent-stiffness matrix, Strain measures;

Material nonlinearity: Plasticity systems, yield criteria, flow rules, hardening rules, tangent stiffness, finite strain formulation for metal forming analysis, governing rate equations, governing incremental equations, Elasto-plastic formulation, element expressions;

Contact nonlinearity: Contact applications, contact kinematics, contact algorithms, issues in FE contact analysis and troubleshooting; and

Issues in nonlinear FEA: Solution methods and strategies, convergence and stop criteria, post processing of results, troubleshooting.

Recommended Books:

Concepts and applications of finite element analysis By R. D. Cook, John Wiley & Sons, 2007. Finite-Element Plasticity and Metalforming Analysis By G. W. Rowe, C. E. N. Sturgess, P. Hartley, Cambridge University Press, 2005.

Advances in Numerical Methods By Nikos Mastorakis, John Sakellaris, Springer, 2008.

Advances in Production Technology By Christian Becher, Springer, 2014.

Finite Element Method in Manufacturing Processes By J. Paulo Davim (Editor), John Wiley & Sons, 2011.

An Introduction to Nonlinear Finite Element Analysis By J. N. Reddy, McGraw Hill Education, Oxford University Press, 2014.

Subject Code:	Subject Name: Supply Chain Management	L-T-P: 3-0-0	Credit: 3
ME6L319			
\mathbf{D} \mathbf{D} \mathbf{L} (\cdot)			

Course content:

Introduction and overview of supply chain management, Inbound and outbound logistics, Supply chain as a source of competitive advantage;

Buyer-Vendor co-ordination, Procurement, Vendor development, Distribution planning, Channel considerations;

Inventory strategies and management, Transportation infrastructure and management, Facility location, Materials handling;

Strategic considerations for supply chain: Supply Chain strategies, Measuring effectiveness of supply management, Bullwhip Effect, Information technology tools in supply chains, Supply chain coordination, Agile and lean supply chains; and

Green Supply chain, Reverse Logistics, Third party logistics, Case studies.

Recommended Books:

Designing and managing the supply chain: Simchi-Levi and Ravi Shankar: Tata Mcgraw Hill, 1999. Logistics and Supply Chain Management, Martin Christopher, Pearson, 1992.

Supply chain management Strategy, planning and operations, Chopra, S., and Meindl, P., Prentice Hall, 2001.

Quantitative Models for Supply Chain Management, Sridhar Tayur, Ram Ganeshan, Michael Magazine (editors), Kluwer Academic Publishers, 1999.

Introduction to Supply Chain Management, R.B. Handfield and E.L. Nochols, Jr.. Prentice Hall, 1999.

Subject Code:	Subject Name: Digital Manufacturing	L-T-P:3-1-0	Credit: 4
ME6L320			

Course content:

Digital design: Geometrical design of curves, Surfaces and solids, Introduction to computer aided engineering analysis and optimum design. Consideration of manufacturing and assembly aspects in design;

Shape digitization: 3D object scanning, Solid reconstruction from point cloud and tessellated data, Down stream applications;

Digital manufacturing: Subtractive manufacturing: Basic architecture, Control hardware and software details, Tooling, Sculptured surface machining;

Additive Manufacturing: Basics, Hardware details and capabilities of commercial systems, Planning of material addition, Rapid tooling solutions;

Computer Aided Process Planning: CAPP and route sheet development, CAPP system, Computer aided plant layout, Computer Aided Production Planning and Control, Algorithms for CAPP; Product Database Management Systems: Types, Management Information System, Manufacturing data preparation, Shop-floor control, automatic identification systems (sensors, trackers), Product life cycle management; and

Introduction of Industry 4.0.

Recommended Books:

Fundamentals of Digital Manufacturing Science, by Z.Zhou,S.Xie, D. Chen, Springer, 2012 Rapid Prototyping: Principles and Applications By C.K. Chua, K.F. Leong, C.S. Lim, John Wiley, 2010

Mastering CAD CAM By Ibrahim Zeid, McGraw Hill, 2005

Automation, production systems, and computer-aided manufacturing By M P Groover, Pearson, 2016

Subject Code:	Subject Name: Additive Manufacturing	L-T-P: 3-0-0	Credit: 3		
ME6L331					
Pre-Requisite(s): Advance	ced Manufacturing Processess - I and II				
Course content:					
Introduction to Additive	Manufacturing (AM), Critical applications, Tradi	tional manufact	uring v/s		
AM;					
Rapid Prototyping (RP):	Basic principles, Steps, Advantages, Different ma	anufacturing pro	ocesses,		
Importance of RP in con	text of batch production;				
RP in integrated CAD C	AM environment, FMS and CIM and their applica	ation, Introduction	on to		
Reverse Engineering;					
Different AM processes	and relevant physics of AM process chain: Direct	and Indirect pro	ocesses		
Rapid Prototyping;					
Classification of differen	at AM techniques based on raw materials, layering	g technique (2-D	or 3-D)		
and energy sources: Pow	der based AM processes involving sintering and r	nelting, Stereo-			
lithography (SL), Extrus	ion based fused deposition modeling (FDM), Lam	inated object			
manufacturing, Solid gro	ound curing, Repetitive masking and deposition, B	eam interferenc	e		
solidification;					
CAD/CAM Modeling, S	licing procedures, Internal hatching, Support struc	cture;			
Advances in metal addition	ive manufacturing, composite manufacturing and	micro additive			
manufacturing;					
Micro- and Nano-lithogr	aphy;				
Tessellation (STL forma	t) and tessellation algorithms, Accuracy and Surfa	ice quality in Ac	lditive		
Manufacturing, Effect of	f part deposition orientation; and				
Bio-medical applications	5.				
D 11D 1					
Recommended Books:			33.7.1		
Rapid Prototyping: Princ	ciples and Applications By C.K. Chua, K.F. Leong	g, C.S. Lim, Joh	n Wiley,		
2010.	. 1 1		т		
Additive manufacturing	technologies: rapid prototyping to direct digital m	anufacturing By	/ lan		
Gibson, David W. Roser	h, Brent Stucker. Springer, 2010Understanding add	Litive manufacti	lring:		
rapid prototyping, rapid	tooling, rapid manufacturing By Andreas Gebhard	it. Hanser Publis	sners,		
2011 Denil Destatoria Tesl		D	-1- 2002		
Rapid Prototyping, Tool	ing and Manufacturing By R. J. M. Hague, P. E. J	Reeves, Paperba	ICK, 2002.		
Rapid Prototyping Tech	nology: Selection and Application By Kenneth Co	Soper, CRC, 200	<i>J</i> 1.		
Rapid Prototyping: Theo	Rapid Prototyping: Theory and Practice By Kamrani A., Nasr E. A., Springer, 2006				
Laser assisted faorication of materials By J.D. Majumdar and I. Manna. Springer Series in Material					
Science, 2015 Denid Dustaturing: Lesen Desed and Other Technologies, Dr. Date: K. Married, M. C. M.					
Kapid Prototyping: Laser-Based and Other Technologies By Patri K. Venuvinod, Weiyin Ma,					
Danid Drotatuning Dr. A.	Springer, 2004.				
Rapid Prototyping and E	nuivas Ocollaiui, Hallsel, 1990.	By Front V	W Lion		
CRC Press 2007	argumenting Applications. A 100100x 101 P10101ypc		w. Liou,		
CICC F1655, 2007.					

Subject Code: ME6L332	Subject Name: Factory Automatiion	L-T-P: 3-1-0	Credit: 4
· · · ·			

Course content:

Introduction: Concept and scope of industrial automation, Socio-economic considerations, Types of automation, Automation strategies, Automation Technologies;

Fluid Power Control: Fluid Power Control elements and standard graphical symbols for them, Construction and performance of fluid power generators, Hydraulic & pneumatic cylinders construction, design and mounting, Hydraulic & pneumatic valves for pressure, flow & direction control, Simple hydraulic and pneumatic circuits;

Pneumatics: Pneumatic Logic Circuits: Boolean Algebra, Truth tables, Un-complementation algorithm and Karnaugh Maps, Design of pneumatic logic circuits for a given time displacement diagram or sequence of operation;

High Volume Production Systems: Transfer devices, Vibratory bowl feeders, Non-vibratory feeders. Part orienting, feed track, Part placing and part escapement systems; Automation strategies, Analysis of flow lines, Automated assembly systems;

Mechatronics: Mechanical system interfacing, Simple mechatronic devices: Stepping motors, DC motors, Analog / digital conversion; and

Programmable automation: CNC, industrial robotics; Flexible manufacturing systems.

Recommended Books:

Fluid Power with Applications by A. Esposito, Prentice Hal of India, New Delhi, 2008. Pneumatic Systems by S.R. Majumdar, McGraw Hill, 2017

Assembly Automation and Product Design, by Geoffrey Boothroyd, CRC press, 2005

Automation, Production System and Computer Integrated Manufacturing by M. P. Groover, Prentice Hal of India, New Delhi, 2017

Subject Code:	Subject Name: Soft Computing and	L-T-P: 3-1-0	Credit: 4
ME6L060	Applications		

Pre-Requisite(s): None

Introduction to soft computing: Soft computing vs hard computing, Adaptive systems and update mechanisms, and Need of soft computing to solve engineering and management problems.

Artificial neural networks: ANN, Back propagation, Radial basis function networks, and Functional link artificial neural networks.

Fuzzy logic: Theory and principles of TS and MF systems.

Bio/Nature-inspired techniques based optimization: Genetic algorithm, Differential evolution, Particle swarm optimization, Ant colony optimization, and Bacterial foraging algorithm.

Multi-objective optimization: Non-dominated sorting genetic algorithm – II, Multi-objective particle swarm optimization, and Their applications.

Development of intelligent and hybrid systems.

Applications of ANN, fuzzy logic and bioinspired techniques to real life problems

Recommended Books:

Deb, K., 'Optimization for Engineering Design Algorithms and Examples', Prentice Hall of India, 2009.

Haykin, S., 'Neural Networks and Learning Machines', Prentice Hall, 2009.

Jang, J. S. R., C. T. Sun and E. Mizutani, '*Neuro, Fuzzy and Soft computing: A Computational Approach to Learning and Machine Intelligence*', Prentice Hall, 2009.

Jong, K. A. D., 'Evolutionary Computation – A Unified Approach', PHI Learning, 2009.

Pao, Y. H., 'Adaptive Pattern Recognition and Neural Networks', Addison- Wesley, 1989.

Pratihar, D. K, Soft Computing Fundamentals and Applications, Narosa Publications, 2014.

Research publications (will be suggested during the lectures)

Elective – IV (Semester IX)

Subject Code:	Subject Name: Manufacturing Planning and	L-T-P:3-0-0	Credit: 3
ME6L316	Control		
Pre-Requisite(s):			
Course content:			
Introduction to Manufac	turing Planning and Control. Forecasting: Delphi	method and othe	er
statistical techniques;			
Enterprise Resource Plan	ning(ERP). Inventory Management, Concept of	Economic Ordre	r
Quantity;			
Material Requirements F	lanning(MRP), Manufacturing resource planning	(MRP-II), Distr	ribution
Requirements Planning.	Just-in-Time philosophy;		
Capacity planning and u	tilization. Production activity control, Advanced of	concepts in sche	duling.
Supply chain manageme	nt, case studies;		
Automated material hand	deling system AS/RS systems; and		
Group Technology: part	family formation techniques, Classification and c	oding technique	s.
Computer Aided Process	Planning: Retrival, Generative and hybrid system	ns.	
Recommended Books:			
Manufacturing planning and control for supply chain management By VOLLMANN, BERRY and			
AHYBARK, Tata Mc Grawhill, 2004.			
Automation, production systems, and computer-aided manufacturing By M P Groover, Pearson,			
2016			

Subject Code: ME6L321	Subject Name: Advanced Tooling Design	L-T-P: 3-0-0	Credit: 3
D D ! ! ()			

Course content:

Classifications, Introduction Tool Engineering, Tool Tool Design Objectives, in manufacturing, Challenges and requirements. Standards in Tool Design tool drawings, Surface finish. Fits Materialsdesign-Tool and Tolerances. Tooling Ferrous and Non ferrous Tooling Materials, Carbides, Ceramics and Diamond. Non metallic tool materials, Designing with relation to heat treatment;

Introduction to: Fixed Gauges, Gauge Tolerances, Selection of material for gauges – Indicating gauges, Automatic gages, Principles of location, Locating methods and devices, Principles of clamping, Drill jigs – Chip formation in drilling, General considerations in the design of drill jigs, Drill bushings, Methods of construction, Thrust and Turning Moments in drilling, Drill jigs and modern manufacturing, Types of Fixtures – Vise Fixtures, Milling Fixtures, Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding Fixtures, Modular Fixtures;

Types of Dies,Method of Die operation, Clearance and cutting force calculations, Blanking and Piercing die design, Pilots, Strippers and pressure pads, Presswork materials, Strip layout, Short-run tooling for Piercing, Bending dies, Forming dies, Drawing dies, Design and drafting;

Introduction to Tooling requirements for Numerical control systems, Fixture design for CNC machine tools, Sub plate and tombstone fixtures, Universal fixtures, Cutting tools,Tool holding methods, Automatic tool changers and tool positioners, Tool presetting; and

Flexible tooling and fixturing.

Recommended Books:

Tool Design By Cyrll Donaldson, George H. LeCain, V. C. Goold Tata McGraw Hill Publishing Company Ltd, 1943.

Jig and Fixture Design By E.G.Hoffman, Thomson Asia Pvt Ltd, Singapore, 1980.

Tooling data By Prakash Hiralal Joshi, Wheeler Publishing, 2001.

Design of Jigs, Fixtures and Presstools By Venkataraman K. 2005.

Manufacturing Technology By Haslehurst M., The ELBS, 1978.

An introduction to Jig and tool design by M. H. A. Kempster, Butterworth-Heinemann, 1998

Subject Code:	Subject Name: Metrology and Computer Aided	L-T-P: 3-1-0	Credit: 4
ME6L322	Inspection		

Course content:

Definition, Standards of measurement, Errors in measurement, Interchangeability and Selective assembly, Accuracy and Precision, Calibration of instruments, Linear measurement, Angular measurement;

Definitions and Types of Surface Texture, Surface Roughness Measurement Methods, Comparison, Profilometer, 3D Surface Roughness Measurement, Instruments;

Interferometry: Introduction, Principles of light interference, Interferometers, Measurement and Calibration, Laser Interferometry;

Tool Makers Microscope, Microhite Co-Ordinate measuring machine, Applications, Laser Micrometer, Laser Scanning gauge, Non contact and in-process inspection, Vision system;

Overview of Computer imaging systems, Image Analysis, Preprocessing, Human vision system, Image model, Image enhancement, gray scale models, histogram models, Image Transforms;

Total quality control,Quality assurance, Zero defects,POKA-YOKE Statistical evaluation of data using; and

Ray based scanning techniques, X-ray technique, CT technique.

Recommended Books:

Metrology for engineers By GNGalyer FW and CRSHOTBOLT, ELBS, 1990.

Industrial Metrology By Graham TSmith, Springer, 2002

ASTE Handbook of Industries Metrology, Prentice Hall of India Ltd., 1992.

Image Processing, Analysis, and Machine Vision By Milan Sonka, Vaclav Hlavac and Roger Boyle, Cengage-Engineering; 3 Ed., 2007

Subject Code:	Subject Name: Operations Management	L-T-P: 3-0-0	Credit: 3
ME6L323			
Pre-Requisite(s):			
Course content:			
Competitiveness, Operative	ations Strategy, Balance Scorecard, Facility Lo	cation, Decision	Analysis,
Facility Layout;			
Product and Services, Q	uality Function Deployment, Process Planning,	Process Selection	1, Quality
Control, Inventory Control	rol, Inventory Models, Lean Production System;		
Project Management, W	ork Design and Measurement;		
Resource Planning, Sche	duling, Forecasting Methods; and		
Sustainable manufacturing	ıg.		
Recommended Books:			
Russel, and Taylor, Oper	ations management, Wiley India, 2011.		
Krajewski, Ritzman, and Malhotra, Operations management, Pearson Prenctice Hall, 1993.			
Heizer, and Render, Operations management, Pearson Education, 2010.			
Stevenson, Operations Management, McGraw Hill, 1982.			
Chase and Aquilano, Op	erations Management, Tata McGraw Hill, 2006.		

Subject Code:	Subject Name: Machine Tool Design	L-T-P: 3-1-0	Credit: 4
ME6L324			

Pre-Requisite(s): Machining Science

Course content:

Introduction: Classification of Machine Tools and their technological capabilities, Modularity in machine tool design, General requirement of machine tool design;

Machine Tool Drives: Introduction to kinematics of machine tools, Mechanical, hydraulic and electrical drives, Stepped and step less regulations of speed and feed, Layout of spindles drive and feed drive in machine tools, Structural diagram, Ray diagram, Design of speed box and feed box;

Design of Machine tool structures: Function & Requirement of Machine Tool Structure, Design Criteria from Strength & Stiffness considerations, Role of Static & Dynamic Stiffness in the design, Factors affecting stiffness of machine tool structures & methods of improving it, Basic Design procedure of machine tool structures, Design of bed, head stock etc.;

Design of Guideways: Function and Types, Design of hydrostatic, hydrodynamic and antifriction guideways;

Design of spindles and spindle supports: Function & Requirements of Spindle Units, their Materials, Design of Spindle, Requirements of Spindle Supports, Selection of sliding and antifriction bearings;

Dynamics of machine tools: General procedure for assessing the dynamic stability of cutting process, closed loop system, chatter in machine tools;

Control Systems: Functions, requirements & types of machine tool controls, controls for speed & feed change. Automatic and manual Controls. Basics of numerical controls. Machine tool; and Multi-functional machine tools.

Recommended Books:

Machine Tools By Sen, G.C. and Bhattacharya, A., Central Book Agency (1989)

Machine Tool Design & Numerical Control By Mehta, N. K., McGraw Hill (2012).

Manufacturing Technology: Metal cutting and Machine Tools By Rao P N, McGraw Hill (2013)

Design of Machine Tools By Basu, S. K. and Pal, D.K., Allied Publishers (2008).

Machine Tool Design By Acherkhan N. S., University Press of the Pacific, (2000

Fundamentals of Machining And Machine Tools By Boothroyd G and Knight Wiston A., CRC press (2005)

A Text Book Of Machine Tools & Tool Design By Sharma, P. C., S. Chand Limited, (2005)

ME0L327	Subject Code: ME6L327	Subject Name: Lasers in Manufacturing	L-T-P: 3-1-0	Credit: 4
---------	--------------------------	---------------------------------------	--------------	-----------

Course content:

Introduction to Lasers: Basic principle of laser generation, Stimulated Emission; Properties of laser beam, Industrial, medical and scientific applications of Laser;

Basic concept of the Laser System: Gain Medium, Optical Resonator, Pump Source, Laser beam delivery systems;

Introduction and basic fundamentals and characteristics of different industrial lasers: He-Ne, CO₂, Nd:YAG, Excimer, Fiber, Diode and Ultra-short pulse lasers;

Laser processing fundamentals: Laser beam interaction with metal, semiconductor and insulator; Ultra-short laser pulse interaction; heat flow theory;

Laser Material Processing Applications; process characteristics, mode of material removal: Laser Cutting and Drilling; Laser Welding; Laser Surface Modifications; Laser Additive Manufacturing; Laser Metal Forming; Laser shock peening; Laser Etching and Paint Striping; LCVD and LPVD; Laser hybrid machining;

Liquid assisted laser machining: applications and advantages;

Overview of Industrial & Scientific Applications of laser: Metrological applications, Holography (Non-destructive Testing), Laser Isotope Separation, Laser fusion ;

Theoretical modeling of laser material processing; and

Economics of Laser Applications in Manufacturing, Laser safety standards and safety procedures.

Recommended Books:

Laser Fundamentals By William T. Silfvast, Cambridge University Press, New Delhi, 2nd South Asian Edition, 2004.

Principles of Lasers By Svelto Orazio, Springer, 5th Ed. 2010

Laser Material Processing By W. M. Steen and J. Mazumder, Springer, 4th Ed. 2010

Laser Materials Processing By Elijah Kannatey-Asibu, Jr, Wiley, 2009

Laser Fabrication and Machining of Materials By Narendra B. Dahotre & Sandip P. Harimkar, Springer, 2008

Subject Code:	Subject Name: Precision and Micro	L-T-P: 3-1-0	Credit: 4	
ME6L329	Manufacturing			
Pre-Requisite(s):		-		
Course content:				
Introduction: Basic defin	nition, Size scales, Scaling analysis, Technology c	hange, Lithogra	phic	
Processes- Optical and X	K-ray;			
Precision Engineering A	nd Practices: Sources of Error, Machine Tool Van	iables- accuracy	΄,	
stiffness, spindle vibration	on, flatness, straightness and smoothness of motio	n, Feedback Var	riables,	
Cutting Tool Variables,	Workpiece Variables, Environment Effects and T	hermal Errors;		
Introduction To Machini	ng Analysis: Geometry of Cutting Edge, Energy	Models, Compar	rison with	
Micro-scale Machining;				
Diamond Micromachinin	ng: Introduction, Diamond as a Tool Material, Co	mpatible Materia	als,	
Diamond Machining, M	icro-mechanical Applications, Ductile Regime Gr	inding;		
Focused ion beam based	Micro-/Nano-fabrication;			
Micro-ECM, Micro-EDI	M etc: Parameter dependencies, Case studies;			
Micro-milling: Process a	nd applications, micro-mechanically milled X-ray	/ masks, Mask A	Absorption	
Quantification, Exposure Quantification;				
Micro-drilling: Micro-drilling and Macro-drilling Techniques;				
Laser Micromachining: laser Optics, Laser Ablation, Heat Affected Zone and Laser Polymerisation.				
LIGA, S-LIGA Micro Welding: Micro welding in similar and dissimilar materials;				
Micro Casting: Casting processes like vacuum, Semi-solid state, Applications;				
Processing of Integrated Circuits, Clean rooms, crystal growing and shaping of wafers, Etching,				
Photo and other lithography techniques, CVD, Metallisation etc.;				
Micro Forming: Bulk Forming, Forming of Micro-sheet Metal Components;				
Micro Assembly: Mechanical Assembly, Self-assembly of Micro-parts;				
Handling for Micro-manufacturing, Robotics in Micro-manufacturing and Micro-robotics; and				
Measurement, Testing, a	nd Diagnosis for Micro-manufacturing Systems.			
Parammandad Paaka				
<u>Micromanufacturing Drococcoc</u> Dy VK Jain CBC Droco 2012				
Micromanufacturing Engineering and Technology, Dy Vi Oin, Electrice, 2000				
Provision Migromanufacturing Process Web Tutorial: By Hongdi Zhang				
Micro-Manufacturing C	lesion and Manufacturing of Micro-Products by	Muammer Koc	Tuorul	
Ozel Wiley 2011				
0201, 1110, 2011.				

Subject Code: ME6L013	Subject Name: Robotics & Automation	L-T-P: 3-0-0	Credit: 3
Pre-Requisite(s). None			

Course content:

Applications of robot and sensors: Introduction to robots, Internal and external sensors; Actuators: hydraulic, pneumatic and electric actuators, programming of robots;

Homogeneous transformations, D-H parameter notation, direct & inverse kinematics of manipulators: examples of kinematics of some common manipulator configurations; Jacobian, dynamics of manipulators; trajectory planning; and

Automation, types of automation, analysis of automated assembly systems, line balancing problems, analysis of automated material handling systems, automated storage and retrieval systems.

Recommended Books:

Robotics: Fundamental concepts and analysis By A. Ghosal, Oxford university press, 2006. Industrial RoboticsBy M P Groover, Pearson Edu, 2008.

Robotics and ControlBy R K Mittal & I J Nagrath, TMH, 2003.

Robotics: Control, sensing, vision and intelligence By K Fu, R Gonzalez, and C S G Lee, McGraw Hill, 1987.

Robotic Engineering By / Richard D. Klafter, Prentice Hall, 1989.

Introduction to RoboticsBy John J Craig, Pearson Edu. Prentice Hall, 2003

Robot Dynamics & ControlBy Mark W. Spong and M. Vidyasagar, John Wiley & Sons (ASIA) Pte Ltd, 1989.

Automation, Production systems and Computer Intigrated Manufacturing By M P Groover, Prentice Hall India, 1987.