Table of Content

- 1. Compliance report
- 2. B. Tech and Dual Degree (1st and 2nd Semester Common Courses)
 - a. First Semester courses
 - b. Second Semester Courses
 - c. Syllabus
- 3. B. Tech and Dual Degree (3rd Semester 6th Semester Courses)
 - a. Mechanical Engineering
 - b. Syllabus
- 4. B. Tech Degree (7th and 8th Semester Courses)
- 5. Dual Degree (7th Semester 10th Semester Courses)
 - a. Mechanical Engineering
 - i. Manufacturing Engineering
 - ii. Mechanical Systems Design
 - iii. Thermal Science and Engineering

Compliance Report

Components	Subjects	Credit Recommended	Credit Approved
	(i) English	4	4
	(ii) Basic Science and	20	20
1. Common Core	Mathematics		
	(iii) General Sciences	6	6
	(iv) Engineering Sciences	27	27
	(i) Breadth-1		3/4
2. Breadth Basket	(ii) Breadth-2	12-14	3
	(iii) Breadth-3	12-14	3/4
	(iv) Breadth-4		3/4
	(i) Seminar		2
3. Miscellaneous	(ii) Internship	14	2
	(iii) Project		10
	(i) Lateral-1		3
4. Laterals	(ii) Lateral-2	9-12	3/4
	(iii) Lateral-3		3/4
			2 nd year - 20
5. Verticals	Theory	58-68	3 rd year -23/24
5. verucais			4 th year – 19/25
	Laboratory	18-24	18
TOTAL		168-189	172/184

1st Semester and 2nd Semester (Common to All Disciplines of Study)

SEMESTER – I					
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.
Mathematics-1	MA1L001	3-1-0	4	4	4
Physics/ Chemistry	PH1L001/ CY1L001	3-1-0	4	4	5-6
Mechanics / English for Communications or Learning English	ME1L001/ HS1L001 or HS1L002	3-1-0/ 3-0-2 or 3-1-0	4	4/ 5 or 4	6-9
Electrical Technology / Introduction to Programing and Data Structures	EE1L001/ CS1L001	3-1-0	4	4	10-11
Introduction to Manufacturing Processes / Engineering Drawing and Graphics	ME1P001/ CE1P001	0-0-3/ 1-0-3	2/3	3/4	11-12
Physics Laboratory/ Chemistry Laboratory	PH1P001/ CY1P001	0-0-3	2	3	13
Electrical Technology Laboratory / Introduction to Programing and Data Structures Laboratory	EE1P001/ CS1P001	0-0-3	2	3	14
Extra Academic Activity-1	ID1T001	0-0-3	1	3	
		Total	22/23+1	25/27 or 26+3	
SEMESTER – II					
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.
Mathematics-2	MA1L002	3-1-0	4	4	14
Chemistry/ Physics	CY1L001/ PH1L001	3-1-0	4	4	5-6
English for Communication or Learning English / Mechanics	HS1L001 or HS 1L002/ ME1L001	3-0-2 or 3-1-0/ 3-1-0	4	5 or 4/ 4	6-9
Introduction to Programming and Data Structures/ Electrical Technology	CS1L001/ EE1L001	3-1-0	4	4	10-11
Engineering Drawing and Graphics / Introduction to Manufacturing Processes	CE1P001/ ME1P001	1-0-3/ 0-0-3	3/2	4/3	12-13
Chemistry Laboratory/ Physics Laboratory	CY1P001/ PH1P001	0-0-3	2	3	11-12
Electrical Technology Laboratory / Introduction to Programing and Data Structures Laboratory	C51F001	0-0-3	2	3	13
Extra Academic Activity -2	ID1T002	0-0-3	1	3	
	1	Total	23/22+1	27 or 26/25+3	

Syllabus for each course is given in the following pages.

Syllabus for First Year Courses (Common to All Disciplines of Study)

SEMESTER - I

Subject Code: MA1L001	Subject Name: Mathematics- 1	L-T-P: 3- 1-0	Credit: 4

Pre-requisite(s): Nil

Calculus: Rolle's theorem, Lagranges theorem, Cauchy's mean value theorem (Taylor's and Maclaurin theorems with remainders), Indeterminate forms, Concavity and convexity of a curve, points of inflexion, maximum, minimum of a function, 2nd derivative test for max min, Asymptotes and curvature, Cartesian curve tracing, polar curve tracing.

Calculus of Several Variables: Limit, continuity and differentiability of functions of several variables, partial derivatives and their geometrical interpretation, differentials, derivatives of composite and implicit functions, derivatives of higher order and their commutativity, Euler's theorem on homogeneous functions, harmonic functions, Taylor's expansion of functions of several variables, maxima and minima of functions of several variables, Lagrange's method of multipliers.

Vector Calculus: Double and triple integrals, Scalar and vector fields, level surfaces, directional derivative, Gradient, Curl, Divergence, line and surface integrals, theorems of Green, Gauss and Stokes. Beta and Gamma functions.

Ordinary Differential Equations: First order differential equations, exact, linear and Bernoulli's form, second order differential equations with constant coefficients, Euler's equations, particular integrals by: variation of parameters, undetermined coefficients, operator method, system of differential equations.

Text Books:

1. Narayan S. and Mittal P. K. *Differential Calculus and Integral Calculus*, S. Chand & Company Ltd.

2. Thomas G. B. and Finney R. L. Calculus and Analytic Geometry, Pearson

3. Kreyszig E. Advanced Engineering Mathematics, John Wiley & Sons

5. Simmons G. F. and Robertson J. S. *Differential Equations with applications and Historical notes*, Tata McGraw-Hill Publishing Company Limited, New Delhi, India

Reference Books:

- 1. Bartle R. G. and Sherbert D. R. Introduction to Real Analysis, Wiley India
- 2. Jain R. K. and Iyengar S. R. K. Advanced Engineering Mathematics, Narosa
- 3. Apostol T. M. Calculus Vol.2, Wiley India
- 4. Ross S. L. Differential Equations, Wiley India
- 5. Coddington E. A. An Introduction to Ordinary Differential Equations, Prentice Hall

Subject Code: PH1L001	Subject Name: Physics	L-T-P: 3- 1-0	Credit: 4
Pre-requisite(s): Nil			

Classical Physics: Review of Newtonian mechanics, Lagrangian mechanics, constraints, principle of virtual work, D'Alembert's principle, Action Principle and Lagrange's equations, Velocity dependent potentials, Legendre Transformation and Hamiltonian equations, Central forces, Kepler's problem, Waves and Oscillations, Damped and Forced Oscillations, normal modes, Basics of Special Relativity, Galilean and Lorentz transformations, Time dilation and length contraction, relativistic kinematics and mass-energy equivalence. Electromagnetic Waves and Optics: Maxwell's equations, wave equation, plane electromagnetic waves, longitudinal and transverse waves, superposition, wave packets, two and three dimensional waves, energy-momentum, Poynting's theorem, electromagnetic boundary conditions, Laser, Young's experiment, interferometers, diffraction, Fraunhofer diffraction (single slit), dispersion. Wave Mechanics: Failure of classical physics, qualitative review of relevant experiments, de Broglie waves, uncertainty principle, wave function and Schrodinger equation, probability interpretation, particle on a chain, potential barrier and quantum tunneling, potential well, Harmonic oscillator, operator algebra, Hydrogen atom and angular momentum algebra.

Text/ Reference Books:

- 1. Crawford F.S. Waves, Vol. 3, Berkely Physics Series.
- 2. Goldstein, Classical Mechanics, Pole and Safko, Pearson Education Inc.
- 3. Saleh and Teich. Fundamentals of Photonics, Wiley-Interscience.
- 4. Ghatak A. Optics, McGraw-Hill.
- 5. Griffiths D.J. Introduction to Quantum Mechanics, Pearson Education Inc.
- 6. Pain H. J. The Physics of Vibrations and Waves, Wiley.
- 7. Resnick R. Introduction to Special Relativity, John Wiley (Asia).
- 8. Landau L. and Lifshitz E. Mechanics, Oxford
- 9. Zweibach B. A First Course in String Theory, Cambridge University Press
- 10. Hecht E. Introduction to Optics, Addison-Wesley.
- 11. Feynmann Lecture series on Physics.
- 12. Sakurai J. J. Modern Quantum Mechanics, Benjamin-Cummings.

Subject Code: CY1L001	Subject Name: Chemistry	L-T-P: 3-1-0	Credit: 4
Pre-requisite(s): Nil			

Energetics & Kinetics: (a) Basic Concepts and Laws of Thermodynamics; Entropy; Engineering Devices: Efficiency & Conversion; Thermochemistry; Bioenergetics. (b) Basic

Rate Laws; Multistep Reactions; Activation Energy. (c) Transport of Ions and Gases in biofluids and across biomembranes; Equilibrium: Proton Equilibrium (aqueous & nonaqueous) including Buffers. Phase Equilibrium. Redox & Electrochemistry: Basic Concepts & Laws; Battery (Automobile to Ni-Cd and beyond); Fuel Cells; Latimer, Frost, and Pourbaix diagram; Corrosion. Bonding Models & Properties: (a) In Molecules, Supramolecules, Metals and Metal Complexes; (b) Implications on electrical, magnetic, and optical properties, (c) Absorption and Emission Spectroscopy. Functional Materials - Design & Application: (a) Synthetic Polymers (carbon framework, silicon framework, fluorinated polymer), Bio & biodegradable polymers. (b) Surfactants. (c) Nanostructures, Soft materials and Thin Films. (b) Emerging applications in Energy harvesting, Memory Storage and Micro-fabrication. Industrial & Bio-inspired Chemistry: (a) Case studies on Industrial organics with emphasis to Drugs (b) Oxidation, Reduction, Catalytic hydrogenation and Electron transfer. Molecules in Daily Life: A short tour on molecules behind taste, smell, pain, colour and sex.

Text/Reference Books:

1. Brown L. and Holme, T. Chemistry for Engineering Students, Thomson Brooks.

2. Atkins P. and Paula J. D. Atkins' Physical Chemistry, Oxford.

3. Shriver, D. F. and Atkins, P. W. Atkins' Inorganic Chemistry, Oxford.

4. Morrison R. T. and Boyd R. N. Organic Chemistry, Prentice Hall.

5. Steed J. W. and Atwood J. L. Supramolecular Chemistry, John-Wiley.

6. Caruther W. Reagents in Organic Chemistry, Cambridge University Press.

7. Wiseman P. An Introduction to Industrial Organic Chemistry, Applied Science.

8. Hall N. The New Chemistry, Cambridge University Press.

9. Atkins P. Atkins' Molecules Cambridge University Press.

10. Cengel Y. A. and Boles M. A. *Thermodynamics-An Engineering Approach*, Tata McGraw-Hill

Subject Code: ME1L001	Subject Name: Mechanics	L-T-P: 3- 1-0	Credit: 4
Pre-requisite(s): Nil			

Force systems: Moment of a force about a point and about an axis; couple moment; reduction of a force system to a force and a couple. Equilibrium: Free body diagram; equations of equilibrium; problems in two and three dimensions; plane frames and trusses. Friction: Laws of Coulomb friction, problems involving large and small contact surfaces; square threaded screws; belt friction; rolling resistance. Kinematics and Kinetics of particles: Particle dynamics in rectangular coordinates cylindrical coordinates and in terms of path variables; central force motion. Properties of areas: Moments of inertia and product of inertia of areas, polar moment of inertia, principal axes and principal moments of inertia. Concept of stress and strain: Normal stress, shear stress, state of stress at a point, ultimate strength, allowable stress, factor of safety; normal strain, shear strain, Hooke's law, Poisson's ratio, generalized Hooke's law; analysis of axially loaded members. Torsion: Torsion of cylindrical bars, torsional stress, modulus of rigidity and deformation. Flexural loading: Shear and moment in beams; load, shear and moment relationship; shear and moment diagrams; flexure formula; shear stress in beams;

differential equation of the elastic curve, deflection of beams. Transformation of stress and strain: Transformation of stress and strain, principal stresses, principal strains, Mohr's circle for stress and strain. Combined loading: Axial and torsional; axial and bending; axial, torsional and bending. Column: Buckling of slender columns, Euler bucking load for different end conditions.

Text/Reference Books:

1. Vector Mechanics for Engineers: *Statics and Dynamics* - Ferdinand P. Beer, E. Russell Johnston, Jr. (TMH)

2. Engineering Mechanics: Statics and Dynamics - I.H. Shames (Pearson)

3. Engineering Mechanics - S. Timoshenko, D. H. Young (TMH)

4. Mechanics of Materials - Ferdinand Beer, E. Russell Johnston, Jr., J. DeWolf (TMH)

5. Elements of Strength of Materials - S. Timoshenko, D. H. Young (East West Press)

6. Mechanics of Materials - James M. Gere, Barry J. Goodno (CL Engg)

7. Engineering Mechanics - Stephan Timoshenko, D. Young (TMH)

8. Strength of Materials (Part 1) - S P Timoshenko (CBS)

Communication. The Poetry: A selection of poetry English, American ar different poets from ovarious poetic forms Romantic, etc. The lis	ication is an amalgamation of Literatur Literature component of the course co pieces spanning from 16th century to t nd Indian Literature are chosen to intro different ages and countries and also to like Sonnet, Ballad, Elegy, Didactic, Dr st is an indicative one. 16th century- 17t , Edmund Spenser, Ben Johnson, Thom	mprises of Prose the Post-Modern I oduce to the stude acquaint them w camatic, Nature, L th century- Geoffi nas Wyatt.	and Poetry Period in ents to the vith the .yric, rey Chauce
Communication. The Poetry: A selection of poetry English, American ar different poets from ovarious poetic forms Romantic, etc. The lis	E Literature component of the course co pieces spanning from 16th century to t ad Indian Literature are chosen to intro different ages and countries and also to like Sonnet, Ballad, Elegy, Didactic, Dr st is an indicative one. 16th century- 17t , Edmund Spenser, Ben Johnson, Thom	mprises of Prose the Post-Modern I oduce to the stude acquaint them w camatic, Nature, L th century- Geoffi nas Wyatt.	and Poetry Period in ents to the vith the .yric, rey Chauce
17th century- 18th ce Oliver Goldsmith. 18 Burns, William Blake Shelley, John Keats, I century- Alfred Tenn Housman, Rudyard I Rossetti, Emily Dicki Edward Fitzgerald, V	ntury- John Milton, John Donne, Georg th century- 19th century- Alexander Pc e, William Wordsworth, Samuel Taylor Robert Bridges, Robert Southey, Samue Lyson, Robert Browning, Walter de la N Kipling, D.H. Lawrence, Wilfred Owen nson, Gerald Manley Hopkins, Charlot Valt Whitman. 20th century- Present- T	ope, Thomas Gray Coleridge, Lord I I Johnson. 19th ce Iare, Thomas Har D.G. Rossetti, C te Bronte, Lewis Ced Hughes, Louis	y, Robert Byron, P.B. entury- 20th rdy, A.E. 'hristina Caroll, s MacNeice
-	Spender, W.H. Auden, Nissim Ezekiel, rost, , Ezra Pound, E.E. Cummings, T.S		5
,	Das, Rabindranath Tagore, Jack Preluts twood, Leonard Cohen, Louise Erdricl		

A selection of fictional and non-fictional prose pieces spanning from 17th century to the Post-Modern Period. Fiction and non-fictional pieces from English, American, Russian

and Indian Literature are chosen to introduce the students to different writings from different ages and countries. The list is an inclusive one consisting of short stories, essays, excerpts, extracts from novels, biographies and memoirs, history, travel and other forms. 17th century-18th century: Charles Dickens, William Makepeace Thackeray, George Eliot, Thomas Hardy, Lewis Carroll, Arthur Conan Doyle, John Bunyan, Rudyard Kipling, H.G. Wells, R.L, Stevenson, Jane Austen, Emily Bronte, Charles Lamb, F.M. Dostovevsky, Nikolai Gogol, Daniel Dafoe, Jonathan Swift, Lewis Carroll; 19th century-20th century: Oscar Wilde, O Henry, H.H. Munro, Mark Twain, Somerset Maughaum, Nathaniel Hawthorne, G.B. Shaw, G.K. Chesterton, Agatha Christie, Gerald Durrell, Will Durant, E.M. Forster, Aldous Huxley, Henry David Thoreau, Anton Chekov, Maxim Gorky, Leo Tolstoy, George Orwell, Rabindranath Tagore, M.K. Gandhi, J. Nehru, Virginia Woolf, Guy De Maupassant, Washington Irving, Margaret Fuller, Charles Darwin, Arthur Conan Doyle, F. Scott Fitzgerald, Ernest Hemingway, Edgar Allan Poe. 20th century-Present: J.M. Coetzee, R.K. Narayan, R.K. Laxman, A.P.J. Abdul Kalam, Khushwant Singh, Anita Desai, Yann Martel, Ken Kesey, Stephen King, Thomas King, Richard Wright, N Scott Momaday, Chetan Bhagat, J. Krishnamurthy, Virginia Woolf, Gerald Vizenor, Alice Walker, Chinua Achebe, Jeffrey Archer, Issac Asimov, Roald Dahl, J.R.R. Tolkien, D.H. Lawrence, James Joyce, Oran Pamuk, Salman Rushdie, Bertrand Russell, Ruskin Bond, A.G. Gardiner, John Steinbeck.

Communication:

Because communication is so important in business, businesses want and need people with good communication skills. Business communication is a blend of skills like writing and speaking well, displaying proper etiquettes and listening attentively.

Communications through technology greatly enhances one's ability to communicate effectively and articulately. For example, E-mails often result in a sender's language skills being placed in front of different people simultaneously; while audio and video will reveal the calibre of one's verbal and diplomatic strengths. The communication aspect of the English for Communication Course includes:

- 1. The Basics of Business Communication
- 2. Importance of Listening
- 3. Barriers in the Communication Process
- 4. Business Letters (Letter of Inquiry, Complaint, Cover Letter)
- 5. Resume Writing
- 6. Memo and Memo Reports
- 7. Report Writing
- 8. Fax and E Mail

English Laboratory:

Objective: The laboratory component included in the course provides an ideal platform for students to prepare themselves into confident and self-assured individuals. The Lab course is designed to inculcate confidence and clarity in presentation and expression of thought, views and ideas through practice and exercises. It constitutes six basic components to improve listening, reading and writing skill of the students.

Lessons:

- 1. Pronunciation (Basic sounds of English like Long/Short Vowels; All consonants)
- 2. Stress Intonation (Rising and Falling)
- 3. Speaking- Oral Presentations, Group Discussions, Story Telling, Role Plays

4. Listening – Importance and Practice

5. Reading- Practice

6. Writing (Paragraph writing, good writing and bad writing with samples, Indianism), Grammar (Basic- Articles, Prepositions, Verbs, Common Errors, etc)

Text/Reference Books:

1. John Seely, The Oxford Guide to Writing and Speaking, OUP

2. Krishna Mohan and Meenakshi Raman, Effective English Communication, TMH

3. R.W.Lesikar and John.D. Pettit, *Business Communication: Theory and Application*, All India Traveller Bookseller

4. Francis Soundaraj, *Speaking and Writing for Effective Business Communication*, Macmillan.5. Herta A. Murphy, et al., *Effective Business Communication*, Tata Mc-Graw Hill: New Delhi

6. Ronald B. Adler and George Rodman, Understanding *Human Communication*, Oxford University Press: New York

Subject Code: HS1L002	Subject Name: Learning English	L-T-P: 3-1-0	Credit: 4			
Pre-requisite(s): Nil						
The Learning English Course is designed to improve the English Listening. Speaking						

The Learning English Course is designed to improve the English Listening, Speaking, Reading and Speaking skills of students.

I. Prose

A selection of fictional and non-fictional prose pieces spanning from 17th century to the Post-Modern Period. Fiction and non-fictional pieces from English, American, Russian and Indian Literature are chosen to introduce the students to different writings from different ages and countries. The list is an inclusive one consisting of short stories, essays, excerpts, extracts from novels, biographies and memoirs, history, travel and other forms. 17th century- 18th century- Charles Dickens, William Makepeace Thackeray, George Eliot, Thomas Hardy, Lewis Carroll, Arthur Conan Doyle, John Bunyan, Rudyard Kipling, H.G. Wells, R.L, Stevenson, Jane Austen, Emily Bronte, Charles Lamb, F.M. Dostoyevsky, Nikolai Gogol, Daniel Dafoe, Jonathan Swift, Lewis Carroll. 19th century- 20th century- Oscar Wilde, O Henry, H.H. Munro, Mark Twain, Somerset Maughaum, Nathaniel Hawthorne, G.B. Shaw, G.K. Chesterton, Agatha Christie, Gerald Durrell, Will Durant, E.M. Forster, Aldous Huxley, Henry David Thoreau, Anton Chekov, Maxim Gorky, Leo Tolstoy, George Orwell, Rabindranath Tagore, M.K. Gandhi, J. Nehru, Virginia Woolf, Guy De Maupassant, Washington Irving, Margaret Fuller, Charles Darwin, Arthur Conan Doyle, F. Scott Fitzgerald, Ernest Hemingway, Edgar Allan Poe. 20th century- Present- J.M. Coetzee, R.K. Narayan, R.K. Laxman, A.P.J. Abdul Kalam, Khushwant Singh, Anita Desai, Yann Martel, Ken Kesey, Stephen King, Thomas King, Richard Wright, N Scott Momaday, Chetan Bhagat, J. Krishnamurthy, Virginia Woolf, Gerald Vizenor, Alice Walker, Chinua Achebe, Jeffrey Archer, Issac Asimov, Roald Dahl, J.R.R. Tolkien, D.H. Lawrence, James Joyce, Oran Pamuk, Salman Rushdie, Bertrand Russell, Ruskin Bond, A.G. Gardiner, John Steinbeck.

II. Writing- Paragraph, Essay, Précis, Dictation, Comprehension, Letter Writing

III. English Tutorial- Practice Listening and Speaking English

IV. English Practice- Grammar Assignments and Workbook (Everyday English Level I/II)

Text/Reference Books:

1. John Seely, The Oxford Guide to Writing and Speaking, OUP

2. Krishna Mohan and Meenakshi Raman, Effective English Communication, TMH

3. R.W.Lesikar and John.D. Pettit, *Business Communication: Theory and Application*, All India Traveller Bookseller

4. Francis Soundaraj, Speaking and Writing for Effective Business Communication, Macmillan.

5. Herta A. Murphy, et al., *Effective Business Communication*, Tata Mc-Graw Hill: New Delhi

6. Ronald B. Adler and George Rodman, Understanding *Human Communication*, Oxford University Press: New York

Subject Code: EE1L001	Subject Name: Electrical Technology	L-T-P: 3-1-0	Credit: 4

Pre-requisite(s): Nil

Introduction: Sources of energy; General structure of electrical power systems, Power transmission and distribution via overhead lines and underground cables, Steam, Hydel, and Nuclear power generation; DC Networks: Kirchhoff's laws, node voltage and mesh current methods, Delta-star and star-delta conversion, Superposition principle, Thevenin's, Norton's theorems and Maximum power transfer theorem; Single phase AC Circuits: Single phase EMF generation, average and effective values of sinusoids, solution of R,L,C series circuits, the j operator, complex representation of impedances, phasor diagram, power factor, power in complex notation, solution of parallel and series parallel circuits; Three phase AC Circuits: Three phase EMF generation, delta and Y – connections, line and phase quantities, solution of three phase circuits, balanced supply voltage and balanced load, phasor diagram, measurement of power in three phase circuits, Three phase four wire circuits; Magnetic Circuits: Ampere's circuital law, B - H curve, solution of magnetic circuits, hysteresis and eddy current losses; Transformers: Construction, EMF equation, ratings, phasor diagram on no load and full load, equivalent circuit, regulation and efficiency calculations, open and short circuit tests, autotransformers; DC Machines: Construction, EMF and Torque equations, Characteristics of DC generators and motors, speed control of DC motors and DC motor starters; Electrical Measuring Instruments: DC PMMC instruments, shunt and multipliers, multimeters, Moving iron ammeters and voltmeters, dynamometer, wattmeter, AC watthour meter, extension of instrument ranges.

Text/Reference Books:

 E. Hughes, "Electrical Technology," Pearson Education, 2010.
 V. Del Toro, "Electrical Engg Fundamentals," PHI Learning, 2009.
 I. J. Nagrath and D. P. Kothari, 'Basic Electrical Engineering' TATA Mc Graw Hill Education, 2009.
 D. A. Bell, "Electric Circuits," 7th Ed., Oxford Higher Education, 2009.

Subject Code:Name: Introduction to Programming andCS1L001Data Structure	L-T-P: 3-1-0	Credit: 4
---	-----------------	-----------

Pre-requisite(s): Nil

Digital computer fundamentals, concepts of algorithms and introduction to programming – examples; Constants and variables – data types, operators and expressions - type conversions, types of expressions; Assignment statements, input-output statements - concepts of data formats; Control statements: branching – if-else statements; iteration – while, do-while, for statements. nested control structures, switch, break and continue statements; Functions and recursion – examples; concepts of parameter passing by values and by reference; Arrays – single and multidimensional, examples – searching and sorting; Introduction to pointers, character strings and arrays, pointers and arrays; Structures, linked lists, dynamic allocation, stacks and queues, binary trees and tree traversals; Data files – creating, opening, closing and operating data files; (The programming language C to be used as the basis language).

Text Books/ Reference Books:

1. B. Gottfried, "Schaum' s Programming with C," Tata McGraw-Hill.

2. E. Balaguruswamy, "Programming in ANSI C," Tata McGraw-Hill.

3. Y. Kanetkar, "Let us C," BPB Publications.

4. S. Lipschutz, "Data Structures, Schaum's Outlines Series," Tata McGraw-Hill.

5. Brian W. Kernighan and Dennis M. Ritchie, "*The C Programming Language*," Prentice Hall of India.

6. Ellis Horowitz, Satraj Sahni and Susan Anderson-Freed, *"Fundamentals of Data Structures in C,"* W. H. Freeman and Company.

Subject Code: ME1P001	Name: Introduction to Manufacturing Processes	L-T-P: 0- 0-3	Credit: 2
Pre-requisite(s): Nil			
0	to various machine tools and demonstration el pin as per drawing by machining in centre		g

- External screw thread on lathe
- Making a cast iron Vee block by shaping
- Making a regular polygon prism (MS)/ hexagon by milling machine
- Slot fitting by milling machine
- Study of machining in machining in machining centre (CNC)
- Study of Electro discharge machining (EDM)

Foundry Practice:

- Orientation, demonstration and practice on metal casting
- Practicing sand moulding using split and uneven parting line pattern
- Practice on CO2 moulding and machine moulding
- Mechanised sand preparation and melting practice

Welding Practice:

- Practice on electric arc welding
- Practice on oxy-acetylene gas welding
- Introduction and demonstration on submerged arc welding

Metal Forming:

Demonstration of deep drawing and other forming process

Text/Reference Books:

- 1. Chapman W.A.J., Workshop Technology Part I, CBS Publishers.
- 2. Chapman W.A.J., Workshop Technology Part II, CBS Publishers.
- 3. Hajra Choudhury S.K., Elements of workshop Technology Vol. I, Media Promoters.
- 4. Hajra Choudhury S.K., Elements of workshop Technology Vol. II, Media Promoters.

Subject Code: CE1P001	Subject Name: Engineering Drawing and Graphics	L-T-P: 1-0-3	Credit: 3	

Pre-requisite(s): Nil

Introduction to IS code of drawing; Conics and Engineering Curves – ellipse, parabola, hyperbola, cycloid, trochoid, involute; Projection of lines – traces, true length; Projection of planes and solids; sold objects – cube, prism, pyramid, cylinder, cone and sphere; Projection on Auxiliary planes; Isometric projection, isometric scale; Section of solids – true shape of section; Introduction to CAD tools – basics; Introduction of Development and Intersection of surfaces.

Text/Reference Books:

Bhatt N.D.*Elementary Engineering Drawing,* Charotar Publishing House. Gill P.S.*Engineering Drawing & Engg. Graphics,* S. K. Kataria & Sons. Lakshminarayan L.V. and Vaish R.S.*Engineering Graphics,* Jain Brothers.

Subject Code: PH1P001	Subject Name: Physics Laboratory	L-T-P: 0-0-3	Credit: 2					
Pre-Requisite(s): Nil								
To verify Malus's Law of per To determine the wave leng transmission diffraction gra- the grating. To study the intensity distr measure the width of the sl To determine the waveleng To determine the wave leng To find out the resonance a spring constant.	gth of the prominent lines of mercury sou ating and to calculate the resolving power ibution of Fraunhofer diffraction pattern it for a given wavelength of laser light. gth of the given source using the Michelsc gth of the given source using Fresnel's bij nd beat time period of the coupled pendu	arce by a pla r and disper by a single s on interferon prism. ulum and fir	ne sive power o slit and neter. nd out the					
Text/Reference Books: 1. Ghatak <i>A. Optics,</i> McGra 2. Pain H. J. <i>The Physics of V</i>								

Subject Code: CY1P001	Subject Name: Chemistry Laboratory	L-T-P: 0-0- 3	Credit: 2		
Prerequisite(s): Nil					
Experiment-1: Determination of the surface tension and parachor of a homologous series. Experiment -2: Measurement of the coefficient of viscosity of ethanol & ethanol -water system.					
Experiment -3: Studies on acid-base conductometric titration.					
Experiment- 4: Studies on PH metric titration of strong base with strong acid.					
Experiment -5: Estimation of sulphate ion in tap water by nepheloturbidimetric analysis.					
Experiment - 6: Spectropl	notometric determination of acid d	issociation consta	nt (pka) of		

methyl red (MR) an acid base indicator.

Experiment -7: Determination of solubility and solubility product of a sparingly soluble salt at room temperature by conductometric method.

Experiment- 8: Potentiometric titration of a given sodium carbonate solution with aquesous hydrochloric acid solution.

Experiment -9: kinetics of ester hydrolysis.

Experiment -10: Detection of functional groups in an organic compound for solid sample. Experiment-11: Detection of functional groups in an organic compound for liquid sample.

Experiment -12: Thin layer chromatography (TLC).

Text/Reference Books:

1. Nad, A. K.; Mahapatra, B. and Ghoshal A. *An advanced course in practical chemistry*, New Central Book Agency (P) Ltd.

2. Elias A. J. A collection of general chemistry experiments, University Press.

3. Maity S. and Ghosh N. Physical Chemistry Practical, New Central Book Agency (P) Ltd.

Subject Code: EE1P001	Subject Name: Electrical Technology Laboratory	L-T-P: 0- 0-3	Credits: 2					
Prerequisite(s): Electr	Prerequisite(s): Electrical Technology							
Experiments as per the topics in the syllabus for the course `Electrical Technology' (EE1L001) will be conducted in the laboratory class.								
Text Books: 1. E. Hughes, <i>"Electrical Technology,"</i> Pearson Education, 2010. 2. V. Del Toro, <i>"Electrical Engg Fundamentals,"</i> PHI Learning, 2009.								
 Reference Books: 1. I. J. Nagrath and D. P. Kothari, 'Basic Electrical Engineering' TATA McGraw Hill Education, 2009. 2. D. A. Bell, "Electric Circuits," 7th Ed., Oxford Higher Education, 2009. 								

Subject Code: CS1P001	Subject Name: Introduction to Programming and Data Structures Laboratory	L-T-P: 0-0-3	Credit: 2
Prerequisite(s): Introduction to Programing and Data Structures			

Familiarization of a computer and the environment; Execution of sample programs related to Expression evaluation, Conditionals and branching, Iteration, Functions, Recursion, Tail-recursion, Arrays, String manipulation, Structures, Linked lists, Doublylinked lists and Binary Trees. Execution of programs involving abstract data types like Stacks and Queues.

Semester-II

Subject Code: MA1L002	Subject Name: Mathematics- II	L-T-P: 3- 1-0	Credit: 4
Pre-requisite(s): Nil			

Linear Algebra: Vector spaces, subspaces, span, Linear dependence, independence of vectors, basis, dimension, linear transformations, range, kernel, rank, nullity of linear

transformation, space of all linear transformations, Operator equations, matrix associated with a linear map, linear map associated with a matrix, elementary row operations, solution of algebraic equations, consistency conditions. Matrix inversion by row operations, Eigenvalues and eigenvectors, Hermitian and skew Hermitian matrices, orthogonal and unitary matrices, application to reduction of quadrics. *Complex Analysis:* Limit, continuity, differentiability and analyticity of functions Cauchy-Riemann equations (cartesian and polar), Harmonic functions, Elementary complex functions, Line integrals, upper bounds for moduli of contour integrals, Cauchy's integral theorem, Cauchy's integral formula, derivatives of analytic functions, Power series, Taylor's series, Laurent's series, Zeros and singularities, Residue theorem, evaluation of improper integrals by residue theorem.

Text books/ Reference Books:

- 1. Strang G. Linear Algebra and its applications, Cengage Learning
- 2. Churchill R.V. and Brown J.W. Complex Variables and Applications, Mc-Graw Hill
- 3. Kreyszig E. Advanced Engineering Mathematics, John Wiley & Sons
- 4. R. K. and Iyengar S. R. K. Advanced Engineering Mathematics, Narosa
- 5. Krishnamurthy V., Mainra V. P. and Arora J.L. *An Introduction to Linear Algebra*, Affiliated East-West Press Pvt Ltd New Delhi
- 6. Axler S. Linear Algebra Done Right, UTM, Springer
- 7. Poole D. Linear Algebra: A Modern Introduction, Brooks/Cole

All other courses are same as Semester-I Courses.

B. Tech and Dual Degree (3rd Semester – 6th Semester Courses)

Mechanical Engineering (All Specializations – Manufacturing Engineering, Mechanical System Design and Thermal Science & Engineering)

S	EMESTER - II	I		1	
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.
Theory of Machines - I	ME2L001	3-1-0	4	4	18
Basic Electronics	EC2L005	3-1-0	4	4	18-19
Transform Calculus (Mathematics – V)	MA2L005	3-0-0	3	3	19
Introduction to Material Science and Engineering	ID2L001	2-0-0	2	2	19-20
Introduction to Bio Science and Technology	ID2L002	2-0-0	2	2	20-21
Fluid Mechanics	ME2L002	3-1-0	4	4	21
Workshop Processes	ME2P001	0-0-3	2	3	21
Basic Electronics Laboratory	EC2P005	0-0-3	2	3	22
Fluid Mechanics Laboratory	ME2P002	0-0-3	2	3	22
Seminar	ME2S001	0-0-0	2	0	
		Total	28	29	
S	EMESTER - I	V			
Thermodynamics	ME2L003	3-0-0	3	3	22
Partial Differential Equations (Mathematics - IV)	MA2L004	3-1-0	4	4	23
Environmental Science, Technology and Management	ID3L003	2-0-0	2	2	23
Breadth-1		3-0-0	3	3	
Mechanics of Solids	ME2L004	3-1-0	4	4	24
Theory of Machines - II	ME2L005	3-1-0	4	4	24-25
Lateral Theory - 1		3-0/1-0	3/4	3/4	
Machines & Mechanisms Laboratory	ME2P003	0-0-3	2	3	25
Materials Testing Laboratory	ME2P004	0-0-3	2	3	25
· · · · · ·		Total	27/28	29/30	
S	SEMESTER - V	7		-	
Lateral Theory-2	ME3LXXX	3-0/1-0	3/4	3/4	
Heat Transfer	ME3L001	3-1-0	4	4	25-26
Design of Machine Elements	ME3L002	3-0-0	3	3	26
Casting, Welding and Forming (CWF)	ME3L003	3-0-0	3	3	26-27
Systems & Control	ME3L004	3-0-0	3	3	27
Thermo-Fluid Lab - 1	ME3P001	0-0-3	2	3	27-28
CWF Laboratory	ME3P002	0-0-3	2	3	28
Machine Design Practice	ME3P003	0-0-3	2	3	28
¥		Total	22/23	24/25	
S	EMESTER - V	Ί			

Lateral Theory-3	ME3LXXX	3-0/1-0	3/4	3/4	
IC Engines	ME3L005	3-0-0	3	3	28-29
Refrigeration & Air-Conditioning	ME3L006	3-0-0	3	3	29
Elective-1	ME3LXXX	3-0-0	3	3	
Machine Tool & Machining (MTM)	ME3L007	3-0-0	3	3	29
Power Plant Engineering	ME3L008	3-0-0	3	3	30
Thermo-Fluid Lab - 2	ME3P004	0-0-3	2	3	30
MTM Laboratory	ME3P005	0-0-3	2	3	30
		Total	22/23	24/25	
INDUSTRIAL SUMMER TRAINING					

List of Lateral Subjects (I, II and III) for Other Schools

Subject Name	Code	L-T-P	Credit	Contact	Page
				Hour	No.
Lateral – I					
Elements of Mechanical Engineering	ME2L007	3-1-0	4	4	31
Lateral – II (Anyone will be offered)					
Applied Thermodynamics	ME3L004	3-0-0	3	3	31-32
Introduction to CAD/CAM	ME3L005	3-0-0	3	3	32
Lateral - III (Anyone will be offered)					
Introduction to Robotics	ME3L006	3-0-0	3	3	32-33
Industrial Engineering &	ME3L007	3-0-0	3	3	33
Management					

List of Elective Subjects

Elective – I					
Subject Name	Code	L-T-P	Credit	Contact	Page No.
				Hour	_
Operations Research	ME3L012	3-0-0	3	3	33-34
Computational Fluid Dynamics	ME3L013	3-0-0	3	3	34
Robotics	ME3L014	3-0-0	3	3	34-35
Intermediate Fluid Mechanics	ME3L015	3-0-0	3	3	35

Syllabus

Semester-III

Subject Code: ME2L001	Name: Theory of Machines - I	L-T-P: 3-1-0	Credit: 4
Pre-Requisite: None			

Introduction: - Analysis & Synthesis, Terminology, Definition, Types of Mechanism (Planner, Spatial), Mobility, Classification of Mechanisms, Inversions Movability Criteria. Position Analysis - Graphical Method. Analytical Method. Velocity Analysis- Graphical Method, Analytical Method. Instant Centers of Velocity. Acceleration Analysis- Graphical Method, Analytical Method.

Design of Mechanism: - Cam Design: - Introduction, classification of cams & followers. Displacement diagram, Graphical layout of cam profiles, standard cam motions. Gears -Terminology and definition, fundamental law of gearing, Involute properties, interference and Undercutting, Content Ratio, Involumetry, Types of Gears. Gear Train - Simple and Compound Gear Train, Epicyclic Gear Train, Analysis of Planetary Gear by formula and tabular Method, Differentials. Synthesis of linkages- Type, Number and Dimensional Synthesis Function Generation, Path Generation, Two, Three and Four Position Synthesis, Precision Positions, Structural Error, Chebyshev Spacing, Frudenstein's Equation. **Dynamics of Machines**: - Static Force - Introduction, Analysis with & without formation, Methodology of Virtual Work. Dynamic Force Analysis - Introduction, Inertia Forces & D. Alembert's Principle, Principle of Superposition, Shaking forces & moments, Complex Algebra Approach. Dynamics of reciprocating Engines - Engine types, Indicator Diagrams, Dynamic Analysis, Equivalent Masses, Inertia Forces, Crankshaft torques, Engine Shaking Forces. Fly Wheel -Dynamic Theory, Integration Techniques, Multicylinder Engine Torque Summation.

- 1. R. L. Norton, Design of Machinery, 2nd Ed., McGraw-Hill, 1999
- 2. David H. Myszka, Machines and Mechanisms: Applied Kinematic Analysis, 4e Ed., Prentice Hall,2011
- 3. Thomas Bevan, Theory of Machines, CBS Publishers & Distributors, Delhi.
- 4. Shigley J. E. and Uicker J. J., Theory of Machines and Mechanisms, McGraw Hill, Inc.
- 5. Ghosh Amitabh and Malik A.K., Theory of Machines and Mechanism, East-West Press.

Subject Code: EC2L005	Name: Basic Electronics	L-T-P: 3-1-0	Credit: 4			
Pre-Requisite: None						
Semiconductor devices: Di	ode, BJT, MOSFET, their strue	ctures and principle	of operations;			
Amplifiers: Functionality, s	specifications (voltage gain, c	urrent gain, input re	esistance, output			
resistance, dynamic range,	bandwidth, linearity, power	efficiency etc.), effec	ct of cascading,			
various applications and ty	pical circuits; Filters: Low pa	ss, high pass, band	pass and band			
stop filters, single and high	er order passive filter topolog	gies (RC and LC); Fe	eedback: Basic			
concept of negative and po	sitive feedback, application o	f negative feedback	in amplifiers,			
effect on gain, bandwidth,	input resistance, output resist	tance and desensitiv	vity to parameter			
variations; Oscillators: Barl	variations; Oscillators: Barkhausen criterion, sinusoidal and non-sinusoidal oscillators,					
applications and typical circuits; Operational amplifier: Differential mode of operation,						
common mode rejection, typical op-amp specifications, inverting amplifier, non-inverting						
amplifier, integrator, differ	entiator, summing amplifier	etc., concept of activ	ve filters; Power			

electronics: Half wave and full wave rectification, filtering, regulation with zener diode and linear regulators, switched mode power supply; Digital electronics: Review of Boolean algebra and signed number representation schemes in binary, implementation of Boolean functions using various logic gates, concept of combinatorial and sequential circuits, registers and counters from functional viewpoint, concept of programmable processors and microcontrollers.

Text/ Reference Books:

- 1. A. Malvino and D. J Bates "Electronic Principles," Tata McGraw Hill Education, 2006.
- 2. D. A. Neamen, "Electronic Circuits," Tata McGraw Hill Education, 2006.
- 3. Malvino and Brown, "Digital Computer Electronics," Tata McGraw Hill Education, 2001.
- 4. Samuel C. Lee, "Digital Circuits and Logic Design," PHI Learning, 2009.

5. R. A. Gayakwad, "Op-Amps and Linear Integrated Circuits," PHI Learning, 2009.				
Subject Code:	Name: Transform Calculus	L-T-P: 3-0-0	Credit: 3	
MA2L005	(Mathematics – V)			
Pro-Requisite: None	• •			

Pre-Requisite: None

Laplace Transform: Definition of Laplace Transform, linearity property, conditions for existence of Laplace Transform. First and second shifting properties, Laplace Transform of derivatives and integrals, unit step functions, Dirac delta-function, error function. Differentiation and integration of transforms, convolution theorem, inversion, periodic functions. Evaluation of integrals by Laplace Transform. Solution of initial and boundary

value problems. **Fourier Series:** Periodic functions, Fourier series representation of a function, half range

series, sine and cosine series, Fourier integral formula, Parseval's identity.

Fourier Transform: Fourier Transform, Fourier sine and cosine transforms. Linearity, scaling, frequency shifting and time shifting properties. Self-reciprocity of Fourier Transform, convolution theorem.

Other Transforms: Brief Introduction of Z-Transform, Mellin transform and Wavelet Transform, Hilbert Transform, Radon Transform.

- 1. Jain R. K. and Iyengar S. R. K. Advanced Engineering Mathematics, Narosa
- 2. Dyke P. P. G. Introduction to Laplace Transform and Fourier Series, Springer
- 3. Watson E. J. Laplace Transforms and Applications
- 4. Pinkus A. & Zafrany S. Fourier Series and Integral Transforms, Cambridge University Press
- 5. Rao K. S. Introduction to Partial Differential Equations, Prentice Hall of India Private Ltd

Subject Code:	Introduction to Material	L-T-P: 2-0-0	Credit: 2
ID2L001	Science and Engineering		
Pre-Requisite: Nor	ie		
Atomic structure a	nd Bonding: Electrons in atoms, B	onding forces and er	nergies, Ionic
bonding, Covalent	Bonding, Metallic Bonding, Second	dary bonding.	-
Structure of Crysta	Iline Solids: Crystalline and nonc	rystalline materials,	Crystal structures in
metals and ceramic	s, Miller indices	-	-
Imperfections in S	olids: Point defects, Line defects a	nd dislocations, Inter	rfacial defects, Bulk
or volume defects,	significance of defects in materials		

Diffusion in materials: Diffusion mechanisms, Steady and non-steady state diffusion, Factors that influence diffusion

Phase Diagrams: Definitions and basic concepts, Types of phase transformations, Gibbs Phase Rule, Interpretation of phase diagrams

Mechanical Properties of Materials: Elastic deformation, Plastic deformation, Interpretation of tensile stress-strain curves, Measurement of hardness in materials

Electrical Properties of Materials: Electrical conduction, Semiconductivity, Dielectric Behaviour, Ferroelectric and Piezoelectric Behaviour

Thermal Properties: Heat capacity, Thermal expansion, Thermal conductivity, Thermal stresses

Magnetic Properties: Basic concepts, Diamagnetism, Paramagnetism, Ferromagnetism, Antiferromagnetism, Ferrimagnetism, Influence of temperature, Domains and Hysteresis Optical Properties: Interaction of light with solids, Optical properties of metals and non-metals.

Text/ Reference Books:

1. Materials Science and Engineering, William D. Callister, Jr. Wiley India (P) Ltd.

2. Introduction to Physical Metallurgy, Sidney H. Avner, Tata McGraw-Hil.

Subject Code:	Subject Name: An Introduction	L-T-P: 2-0-0	Credit: 2
ID2L002	to Bioscience & Technology		
Pre-Requisite: None			

Cell: The Unit of Life: The concept of cell in the perspective of a whole living body; Concept of cell, tissue system, organ and whole organism. Brief overview of plant and animal cell. **Genes are DNA & Bioinformatics:** DNA is the genetic material; Structural aspects-components of DNA and RNA, Nucleosides & Nucleotides (introduction, structure & bonding), Double helical structure of DNA (Watson and Crick model). Mutations change the sequence of DNA, a gene codes for a single polypeptide, recombination occurs by physical exchange DNA, genetic code is triplet. NCBI, protein primary sequence analysis, DNA sequence analysis, sequence alignment, BLAST, multiple sequence alignment; CLUSTALW. **Expression of genetic information:** Central dogma: The Relationship between genes and protein, Visualization of protein structure using PyMol, The Central dogma; The basic processes of DNA replication, RNA Transcription and Protein translation; Protein function: Enzymes as a case study.

Mutation and Disease: Occurrence, kinds of Mutation, spontaneous & induced Mutation, Mutagens, detection of Mutation, Lethal Mutations, Biochemical Mutations, Phenotypic effects of Mutation, Molecular basis of Mutation, Significance & Practical applications of Mutation.

Immune system: An overview of immune system.

Genetic Engineering: Recombinant DNA technology and basic genetic engineering techniques; some case studies: Cholera Toxin, Bt toxins, GM food, transgenic plants.

- 1. Nelson D. L. and Cox M. M. Lehninger Principles of Biochemistry, W. H. Freeman & Company.
- 2. Lodish H.; Berk A. and Kaiser C. A. Molecular Cell Biology & eBook, W. H. Freeman & Company.

3. Voet and Voet. Biochemistry, Wiley.

Subject Code: ME2L002	Name: Fluid Mechanics	L-T-P: 3-1-0	Credit: 4			
Pre-Requisite: None						
Introduction: properties of fluids, concept of continuum, pressure and stresses; Fluid statics:						
pressure variation in a static fluid, force on submerged surfaces, stability of floating bodies;						
Integral relations for Control volume: Reynolds transport theorem – conservation of mass,						
linear and angular momentum & energy; Differential relations for fluid flow – Acceleration of						
fluid (Eulerian & Lagrangian), Differential equation for mass continuity, linear momentum &						
	& Irrotational Flows: Euler equation, Bernou					
	alysis & Similitude; Viscous Flows in Pipes: 1					
	loody diagram, hydraulic diameter, minor ar		1			
boundary layer.		,				
Text/ Reference	Books:					
1. Fox R.W., an	d McDonald A.T., Introduction to Fluid Mec	hanics, John Wile	ey & Sons, Inc.			
	Fluid Mechanics, Tata McGraw Hill Publishin		5			
3. Cengel Y.A.,	and Cimbala J.M., Fluid Mechanics: Fundam	entals and Appl	ications,			
McGraw-Hil	l Science/Engineering/Math.					
0	son, Huebsch, Okiishi, Fundamentals of Flui		5			
	iswas G., Introduction to Fluid Mechanics a	nd Fluid Machine	es, Tata McGraw			
Hill Publishi	ng Company Limited.					
Subject Name: Workshop Processes L-T-P: 0-0-3 Credit: 2						
Subject	Name: workshop Processes		Cicuit. 2			
Code: ME2P0	Name: workshop Processes		Cieun. 2			
Code: ME2P0 01	-		Creun. 2			
Code: ME2P0 01 Pre-Requisite: N	lone					
Code: ME2P0 01 Pre-Requisite: M Turning: facing,	N one drilling, boring, turning-straight, taper, ecce					
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c	Ione drilling, boring, turning-straight, taper, ecces entre lathes.	ntric, grooving, t	hread cutting,			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacir	Ione drilling, boring, turning-straight, taper, ecce entre lathes. g, making regular polygons and cutting gear	ntric, grooving, t teeth in milling	hread cutting, machines.			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacir Hobbing: gear te	None drilling, boring, turning-straight, taper, ecce entre lathes. g, making regular polygons and cutting gear eth generation in gear shaping machine and	ntric, grooving, t teeth in milling hobbing machin	hread cutting, machines. æ.			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacin Hobbing: gear te CNC Machining	None drilling, boring, turning-straight, taper, eccer entre lathes. g, making regular polygons and cutting gear eeth generation in gear shaping machine and : part programming and machining in CNC	ntric, grooving, t teeth in milling hobbing machin machining cente	hread cutting, machines. .e. r setting and			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacin Hobbing: gear te CNC Machining operation of ED	None drilling, boring, turning-straight, taper, eccer entre lathes. g, making regular polygons and cutting gear eeth generation in gear shaping machine and : part programming and machining in CNC M finishing by grinding Measurement of dim	ntric, grooving, t teeth in milling hobbing machin machining cente	hread cutting, machines. .e. r setting and			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacin Hobbing: gear te CNC Machining	None drilling, boring, turning-straight, taper, eccer entre lathes. g, making regular polygons and cutting gear eeth generation in gear shaping machine and : part programming and machining in CNC M finishing by grinding Measurement of dim	ntric, grooving, t teeth in milling hobbing machin machining cente	hread cutting, machines. .e. r setting and			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacin Hobbing: gear te CNC Machining operation of ED	None drilling, boring, turning-straight, taper, eccer entre lathes. g, making regular polygons and cutting gear eeth generation in gear shaping machine and : part programming and machining in CNC M finishing by grinding Measurement of dim ducts.	ntric, grooving, t teeth in milling hobbing machin machining cente	hread cutting, machines. .e. r setting and			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacin Hobbing: gear te CNC Machining operation of ED of machined pro Text/ Reference	None drilling, boring, turning-straight, taper, eccer entre lathes. g, making regular polygons and cutting gear eeth generation in gear shaping machine and : part programming and machining in CNC M finishing by grinding Measurement of dim ducts.	ntric, grooving, t teeth in milling hobbing machin machining cente nensions, forms a	hread cutting, machines. .e. r setting and			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacin Hobbing: gear te CNC Machining operation of ED of machined pro Text/ Reference	None drilling, boring, turning-straight, taper, ecce entre lathes. g, making regular polygons and cutting gear eeth generation in gear shaping machine and : part programming and machining in CNC I finishing by grinding Measurement of dim ducts. Books:	ntric, grooving, t teeth in milling hobbing machin machining cente nensions, forms a	hread cutting, machines. .e. r setting and			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacin Hobbing: gear te CNC Machining operation of ED of machined pro Text/ Reference 1. Rao P.N., Man 2. Jain R.K., Pro	None drilling, boring, turning-straight, taper, eccer entre lathes. g, making regular polygons and cutting gear eeth generation in gear shaping machine and : part programming and machining in CNC M finishing by grinding Measurement of dim ducts. Books: nufacturing Technology, Tata McGraw – Hill	ntric, grooving, t teeth in milling hobbing machin machining cente nensions, forms a	hread cutting, machines. .e. r setting and			
Code: ME2P0 01 Pre-Requisite: M Turning: facing, forming etc. in c Milling: surfacin Hobbing: gear te CNC Machining operation of ED of machined pro Text/ Reference 1. Rao P.N., Man 2. Jain R.K., Pro 3. Lindberg, Pro	None drilling, boring, turning-straight, taper, eccer entre lathes. g, making regular polygons and cutting gear eeth generation in gear shaping machine and : part programming and machining in CNC M finishing by grinding Measurement of dim ducts. Books: nufacturing Technology, Tata McGraw – Hill duction Technology, Khanna Publishers.	ntric, grooving, t teeth in milling hobbing machin machining cente nensions, forms a e-Hall.	hread cutting, machines. e. r setting and and surface finish			

Subject Code:	Subject Name: Basic Electronics	L-T-P: 0-0-3	Credits: 2					
EC2P005	Laboratory (for SMS, SIF)	L-1-1.0-0-5	Cicuits. 2					
	Pre-Requisite: None							
Familiarization with electronic components; Familiarization and usage with oscilloscope, signal generator, multimeter; Frequency-response of R-C, C-R and R-L networks; Square-wave								
testing, V-I chara	acteristics of PN junction diode and zener d	liode; Voltage Rec	tifiers; Common-					
U U	rs; Analog circuits using OP-AMP; logic ga	0						
I I								
Text/ Reference	Books:							
1. A. Malvino	and D. J Bates "Electronic Principles," Tata	McGraw - Hill Ec	lucation, 2006.					
	en, "Electronic Circuits," Tata McGraw - H							
	d Brown, "Digital Computer Electronics," 7							
	ee, "Digital Circuits and Logic Design," PH							
	wad, "Op-Amps and Linear Integrated Cir	6	ing 2009					
5. R. H. Guyak	waa, op minps and Encar micgraced en	cuito, 1111 Leann	ing, 2007.					
Subject Code:	Name: Fluid Mechanics Lab	L-T-P:0-0-3	Credit: 2					
ME2P002								
Pre-Requisite: None								
Hydrostatic Pressure & Measurement of Pressure; Center of Pressure on a Submerged Plane								
Surface; Impact of a Jet of Water; Laminar & Turbulent Flow in Pipes; Minor & Major Losses in								
Pipe Flow; Meas	urement of Flow Rates; Pressure Distributi	on About a Circul	ar Cylinder, Drag					
Force Determina	tion; External Laminar Flows Over Immers	sed Bodies; Lamin	ar & Turbulent					
Boundary Layer								

Semester-IV

	Subject Code: ME2L003	Name: Thermodynamics	L-T-P: 3-0- 0	Credit: 3
--	-----------------------	----------------------	------------------	-----------

Pre-Requisite: None

Introduction, Thermodynamic equilibrium; Qasi-static process; Zeroth law and reference points in thermometry; Work and heat transfer; First law for a closed system; Steady flow energy equation; Second law: Kelvin-Planck and Clausius statements; Causes of irreversibility; Carnot's theorem; Absolute temperature scale; Inequality of Clausius; Entropy principle; Entropy transfer and entropy generation; Quality of energy; Energy principle; Guoy-Stodale theorem; Properties of a pure substance; p-v, p-T, T-s and h-s diagrams; Properties of gases and gas mixtures, Equations of state; Law of corresponding states; Maxwell's equations; Joule-Kelvin effect; Clausius-Clapeyron equation; Brayton cycle; Jet propulson; Turboprop, turbojet and ramjet engines.

- 1. Michael A.B., and Cengel Y.A., Thermodynamics: An Engineering Approach, Tata McGraw Hill Education.
- 2. Van Wylen G.J., and Sonntag R.E., Fundamentals of Classical Thermodynamics, John Wiley & Sons Inc.
- 3. Nag P.K., Engineering Thermodynamics, Tata McGraw Hill.
- 4. Kumar D.S., Thermal Science and Engineering, S. K. Kataria & Sons.

		TTD	C 111 A				
Subject Code: MA2L004	Name: Partial Differential	L-T-P:	Credit: 4				
	Equations	3-1-0					
Pre-Requisite: None							
Power series solution of ODE, Frobenius series, Bessel functions and Legendre polynomials.							
Introduction to partial differential equations, linear and quasi-linear equations of first order.							
Classification of integrals, Pfa	affian differential equation in three v	ariables.					
	on and its geometrical interpretation,	compatil	oility condition,				
Charpits method, special typ	es of first order equations.						
Second order partial differen	tial equations with constant and vari	able coeff	ficients,				
classification and reduction c	of second order equation to canonical	l form., ch	aracteristics.				
Cauchy problem, Cauchy's, N	Neumann and Dirichlet problems.						
Fourier series solution of way	ve equation, vibrations of a string.						
Method of separation of varia	ables to solve heat equation, Laplace	equation	Diffusion equation.				
Integral transform method to	solve second order partial differenti	ial equation	ons.				
Text/ Reference Books:							
1. I N Sneddon: Elements of	Partial Differential Equation: Dover	Publicatio	on of 1957 books				
	d Engineering Mathematics (10th Edi						
2011							
3. Peter V O'Neil: Advanced Engineering Mathematics (7th Edition): Cengage Learning, 2011							
Subject Code: ID3L003	Subject Name: Environmental	L-T-P:	Credit: 2				
,	Science, Technology and	2-0-0					
	Management						
Pre-Requisite: None	~		•				

Module-I: Introduction to Environmental System (10-12 Lectures)

Components of Earth System: Lithosphere, Cryosphere, Atmosphere, Hydrosphere, Biosphere and Outer space, Science of Weather and Climate systems and their variabilities, Energy, Water, Carbon and Nitrogen Cycles in the Atmosphere, Environmental Pollution (Air, Water, Noise, Soil and Marine), Natural Hazards, Climate Change and Global Warming, Green energy and adaptation to Climate change, Observations-modeling-prediction of environmental systems. Role of ocean on earth's climate system

Module-II: Green and Sustainable Technology (6-8 Lectures)

Pollution issues in Industries, Introduction to Green Technology, Emerging and sustainable practices in Electronics, Chemical, Petroleum and Mineral Processing Industries, 12 Principles of Green Chemistry and 12 Principles of Green Engineering.

Module-III: Environmental Economics and Policies (8-10 Lectures)

Components of Earth System: Sustainable development, economics of renewable and nonrenewable natural resources, Green growth, Environmental valuation, accounting and audit, Carbon Trading, Command and control approach and market-based instruments for reducing pollutions, Environmental policies and acts (Air, Noise, Water, Forest, E-waste, Hazardous waste acts).

Subject Code: ME2L004	Name: Mechanics of Solids	L-T-P: 3-2	1- Credit: 4				
Pre-Requisite: None		U					
Review of Elementary Mechanics of Materials, Methods of Analysis, Stress – Strain Relations,							
Failure and Limits on Design. Analysis of Stress and Strain: Definition of Stress at a point,							
Stress Notation, Symmetry of the stress Array on an Arbitrarily Oriented plane,							
Transformation of Stress, Principal Stresses, and Other Properties, Differential Equations of							
Motion of a Deformable Body, Deformation of a Deformable body, Strain Theory,							
Transformation of Strain, ar	d Principal Strains, Small - Displace	ment Theor	ry, Strain				
Measurements and Strain R	osettes. Theories of Failure or Yield (Criteria: Gei	neral Concepts.				
Applications of Energy Met	hods. Bending of Straight Beams, She	ear Center f	or Thin – Wall				
Beam Cross Sections, Curve	d Beams, Axisymmetric Problems, T	orsion and	Elastic Stability.				
Introduction to Fatigue, Cre	ep and Fracture.						
Text/ Reference Books:							
· · ,							
1. Boresi A.P., and Schmid	t R.J., Advanced Mechanics of Solids	, Willey.					
	Mechanics of Solids, Tata McGraw -						
3. Timoshenko S.P., Streng	th of Materials - (Part 1 & 2), CBS Pu	blishers.					
4. Timoshenko S.P., and G	4. Timoshenko S.P., and Goodier J.N., Theory of Elasticity, Tata McGraw – Hill.						
5. Johnston E.R., Beer F.P., Dewolf J.T., and Mazurek D.F., Mechanics of Materials (In SI units)							
5. Johnston E.R., Beer F.P.,							
-Tata McGraw - Hill.	Dewolf J.T., and Mazurek D.F., Mec	hanics of M					
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I	hanics of M					
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic	Dewolf J.T., and Mazurek D.F., Mec	hanics of M					
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I	hanics of M Education.					
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic 7. Popov E.P., Engineering Subject Code: ME2L005	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall.	hanics of M Education.	aterials (In SI units)				
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II	hanics of M Education. L-T-P: 3-1-0	aterials (In SI units) Credit: 4				
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in	hanics of M Education. L-T-P: 3-1-0 various coo	aterials (In SI units) Credit: 4 rdinate systems,				
-Tata McGraw – Hill. 6. Hibbeler R.C., Mechanic 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translatin	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kineti	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic	aterials (In SI units) Credit: 4 rdinate systems, les: Newtons				
 -Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translatin second law, equations of motion 	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kineti	hanics of M Education. L-T-P: 3-1-0 various coo cs of partici- med motion,	aterials (In SI units Credit: 4 rdinate systems, les: Newtons , work-energy				
 Tata McGraw - Hill. 6. Hibbeler R.C., Mechanice 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translating second law, equations of more relation, conservation of energy 	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson H Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kineti bion for unconstrained and constraine ergy, conservative and non-conserva	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic ned motion, tive forces,	aterials (In SI units Credit: 4 rdinate systems, les: Newtons , work-energy potential energy,				
 Tata McGraw - Hill. 6. Hibbeler R.C., Mechanice 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Reprelative motion in translating second law, equations of more relation, conservation of energimpulse-momentum relation 	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kinetion for unconstrained and constraine ergy, conservative and non-conserva n, angular momentum, conservation	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic ned motion, tive forces, of moment	aterials (In SI units Credit: 4 rdinate systems, les: Newtons , work-energy potential energy, um, d'Alemberts				
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translatin second law, equations of more relation, conservation of energy impulse-momentum relation principle. Applications: cent	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kinetio otion for unconstrained and constrained ergy, conservative and non-conserva n, angular momentum, conservation tral force motion, impact. Kinetics of	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic ned motion, tive forces, of moment a system of	aterials (In SI units Credit: 4 rdinate systems, les: Newtons , work-energy potential energy, um, d'Alemberts particles: Newtons				
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanice 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translatin second law, equations of more relation, conservation of energy principle. Applications: cent second law, work-energy references	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kineti otion for unconstrained and constraine ergy, conservative and non-conserva n, angular momentum, conservation tral force motion, impact. Kinetics of lation, impulse-momentum relations	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic ned motion, tive forces, of moment a system of s, conservat	Credit: 4 rdinate systems, les: Newtons , work-energy potential energy, um, d'Alemberts particles: Newtons ion laws, steady				
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanic 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translatin second law, equations of more relation, conservation of energy impulse-momentum relation principle. Applications: cent second law, work-energy re and variable mass flow system	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson H Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kineti bion for unconstrained and constraine ergy, conservative and non-conserva n, angular momentum, conservation tral force motion, impact. Kinetics of lation, impulse-momentum relations ems; Plane kinematics of rigid bodies	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic ned motion, tive forces, of moment a system of s, conservat s: Kinematio	Credit: 4 rdinate systems, les: Newtons , work-energy potential energy, um, d'Alemberts particles: Newtons ion laws, steady cs of rigid bodies,				
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanice 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translatin second law, equations of more relation, conservation of energing impulse-momentum relation principle. Applications: cents second law, work-energy re and variable mass flow syste instantaneous center of rota	Dewolf J.T., and Mazurek D.F., Mec so of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kinetic otion for unconstrained and constraine ergy, conservative and non-conserva n, angular momentum, conservation tral force motion, impact. Kinetics of lation, impulse-momentum relations ems; Plane kinematics of rigid bodies tion, kinematics in rotating frames an	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic ned motion, tive forces, of moment a system of s, conservat s: Kinemation nd relative p	Credit: 4 rdinate systems, les: Newtons , work-energy potential energy, um, d'Alemberts particles: Newtons ion laws, steady cs of rigid bodies, motion; Plane				
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanice 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translatin second law, equations of more relation, conservation of energy impulse-momentum relation principle. Applications: cent second law, work-energy re and variable mass flow syste instantaneous center of rota kinetics of rigid bodies: Line	Dewolf J.T., and Mazurek D.F., Mec s of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kinetic otion for unconstrained and constrained ergy, conservative and non-conserva n, angular momentum, conservation tral force motion, impact. Kinetics of lation, impulse-momentum relations ems; Plane kinematics of rigid bodies tion, kinematics in rotating frames are ear and angular momentum, equation	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic ned motion, tive forces, of moment a system of c, conservat s: Kinematic nd relative m ns of motion	Credit: 4 rdinate systems, les: Newtons , work-energy potential energy, um, d'Alemberts particles: Newtons ion laws, steady cs of rigid bodies, motion; Plane n, work-energy				
-Tata McGraw - Hill. 6. Hibbeler R.C., Mechanice 7. Popov E.P., Engineering Subject Code: ME2L005 Pre-Requisite: None Kinematics of Particles: Rep relative motion in translatin second law, equations of more relation, conservation of energy impulse-momentum relation principle. Applications: cent second law, work-energy re- and variable mass flow syste instantaneous center of rota kinetics of rigid bodies: Line- relation, impulse-momentum	Dewolf J.T., and Mazurek D.F., Mec so of Materials (In SI units), Pearson I Mechanics of Solids, Prentice-Hall. Name: Theory of Machines - II resentation of motion of particles in g frames, constrained motion; Kinetic otion for unconstrained and constraine ergy, conservative and non-conserva n, angular momentum, conservation tral force motion, impact. Kinetics of lation, impulse-momentum relations ems; Plane kinematics of rigid bodies tion, kinematics in rotating frames an	hanics of M Education. L-T-P: 3-1-0 various coo cs of partic ned motion, tive forces, of moment a system of conservat s: Kinemation d relative p ns of motion uction to sp	Credit: 4 rdinate systems, les: Newtons , work-energy potential energy, um, d'Alemberts particles: Newton ion laws, steady cs of rigid bodies, motion; Plane n, work-energy patial dynamics of				

energy, equations of motion, special cases of parallel-plane motion, and gyroscopic motion. Dynamics of Machinery: Balancing- Static unbalance, Dynamic unbalance, Dynamic balancing, Field balancing, Balancing of single cylinder and multicylinder Engines, analytical technique for balancing multicylinder reciprocating engines. Governors- Classification, Centrifugal and inertia governors, Terminology used in Governors- Height, equilibrium speed, Hunting, isochronism, stability, sensitiveness. Gyroscopes- Gyroscopic Action in Machines: Angular velocity and acceleration, gyroscopic torque and couple, gyroscopic effect on naval ships Vibration- Free Vibration of SDOF Systems: Basic concepts; undamped translational system; Rayleigh's energy method; free vibration with viscous damping. Harmonically Excited

Vibration: Equation of motion; undamped response; magnification factor; damped response; energy dissipation.

Text/ Reference Books:

- 1. Beer F.P., and Johnston Jr. E.R., Vector Mechanics for Engineers: Dynamics, McGraw-Hill Book Company Inc.
- 2. Kraige L.G., and Meriam J.L., Engineering Mechanics Dynamics, Wiley.
- 3. Hibbeler R.C., Engineering Mechanics Dynamics, New Jersey: Pearson Prentice Hall.
- 4. Norton R.L., Design of Machinery, McGraw-Hill.
- 5. Myszka D.H., Machines and Mechanisms: Applied Kinematic Analysis, Prentice Hall.
- 6. Bevan T., Theory of Machines, CBS Publishers & Distributors, Delhi.
- 7. Shigley J.E., and Uicker J.J., Theory of Machines and Mechanisms, McGraw Hill, Inc.
- 8. Ghosh A., and Malik A.K., Theory of Machines and Mechanism, East-West Press.
- 9. Wilson C.E., and Sandler J.P., Kinematics and Dynamics of Machinery, Pearson Education.

Calify of Calify ME2D002		LTD	Con 111 0		
Subject Code: ME2P003	Name: Machines & Mechanisms	L-T-P:	Credit: 2		
	Laboratory	0-0-3			
Pre-Requisite: None					
Four Bar Link Mechanism, Si	ingle Stage Helical Gear, Oldham's C	Coupling,	Single Stage Spur		
Gear with Intermediate gear,	Differential Gear, Universal Joint-Si	ingle and	Double joint,		
Epicyclic Gear with Three Ge	ears, Reciprocating Engine Mechanis	m, Oscilla	ating Cylinder		
Mechanism, Sun-Planet Ann	ular gear, Three Stage Spur Gear, Wl	hitworth (Quick Return		
Mechanism, Scotch-Yoke Mechanism, Worm Gear, Single Stage Spur Gear(Parallel Axis), Bevel					
	chanishi, wonn Ocar, onigic otage o	pui Geai	(1 afallel Axis), Devel		
Gear(Single).	chamshi, worm dear, shige stage s	pui Geai	(I afallel Axis), bever		
	Name: Materials Testing	L-T-P:	Credit: 2		
Gear(Single).		-	, ,		
Gear(Single).	Name: Materials Testing	L-T-P:	,		
Gear(Single). Subject Code: ME2P004 Pre-Requisite: None	Name: Materials Testing	L-T-P: 0-0-3	Credit: 2		
Gear(Single). Subject Code: ME2P004 Pre-Requisite: None Tests using UTM (Tensile tes	Name: Materials Testing Laboratory	L-T-P: 0-0-3	Credit: 2		

Semester-V

strain gauges.

Subject Code: ME3L001	Name: Heat Transfer	L-T-P: 3-1-	Credit: 4				
		0					
Pre-Requisite: None							
Modes of heat transfer, ther	mal conductivity, combined	modes of heat	transfer, concept of				
thermal contact resistance. I	Derivation of heat conduction	equation, ste	ady state one-				
dimensional heat conductio	n with and without generation	on of heat in si	mple geometries: plane				
wall, cylindrical and spheric	cal walls, critical thickness of	insulation, he	at transfer from				
extended surfaces, 2D stead	y state heat conduction Unste	eady conducti	on: lumped heat-				
capacity system, transient h	eat conduction in infinite and	l semi-infinite	walls, concept of				
Heisler chart and Schmidt p	olot, heat conduction from a n	noving heat so	ource. Forced				
convection: Derivation of er	nergy equation, concept of the	ermal bounda	ry layer and derivation				
of thermal boundary layer e	equation, flat plate in parallel	flow (solution	by energy integral				
method), cylinder in cross fl	low, internal flows: concept o	f thermally fu	lly developed flow and				
its corollaries, fully develop	ed pipe flow, fully developed	d channel flow	with constant wall				

heat flux and viscous dissipation, turbulent flow in pipes, Reynolds analogy. Free convection: Vertical plate at constant temperature: derivation of governing equation, recognition of dimensionless terms, and solution by integral method, free convection in vertical channel. Condensation and Boiling: laminar film condensation over a vertical plate and horizontal circular tube. regimes of boiling heat transfer, correlations for heat flux in boiling. Heat exchangers: classification of heat exchangers, overall heat transfer coefficient, concept of fouling factor, LMTD and NTU methods of analysis for a double pipe heat exchanger, applications to multi-tube, multi-pass heat exchangers. Thermal radiation: Radiation properties, blackbody radiation, Planck's law, Stefan-Boltzman law, Kirchoff's law, radiation exchange between black surfaces, concept of view factor, radiation exchange between nonblack surfaces, two-surface enclosure, three surface enclosure, concept of radiation shield.

Text/ Reference Books:

- 1. Incropera, Bergman and DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons Inc.
- 2. Cengel Y., Heat Transfer: A Practical Approach, McGraw-Hill Professional.
- 3. Ozisik M.N., Heat Transfer: A Basic Approach, McGraw-Hill Companies.
- 4. Holman J.P., Heat Transfer, McGraw-Hill.
- 5. Bejan A., Convection Heat Transfer, Wiley.

			•
Subject Code: ME3L002	Name: Design of	L-T-P: 3-0-	Credit: 3
	Machine Elements	0	

Pre-Requisite: None

Introduction to Mechanical Engineering Design; Failure Preventions; Materials; Factor of Safety; Fits and Tolerances; Welding, Bonding, and the Design of Permanent Joints; Screws, Fasteners, and the Design of Non-Permanent Joints; Shafts; Clutch, Brakes, Couplings, and Flywheel; Mechanical Springs; Lubrication and Bearings; Gears - General; Flexible Mechanical Elements.

Text/ Reference Books:

- 1. Shigley J.E., Shigley's Mechanical Engineering Design, McGraw Hill.
- 2. Norton R.L., Machine Design 'An Integrated Approach', Pearson.
- 3. Spotts M.F., Design of Machine Elements, Pearson.
- 4. Bhandari V.B., Design of Machine Elements, McGraw Hill.
- 5. Khurmi R.S., and Gupta J.K., Machine Design, S Chand.
- 6. Lingaiah K., Machine Design Data Book, Tata McGraw Hill.

Subject Code: ME3L003	Name: Casting, Welding	L-T-P: 3-0-	Credit: 3
	and Forming (CWF)	0	
Des Dessisites Mana			

Pre-Requisite: None

Casting: Types of foundries, steps in making a casting; cast metals; types, materials and allowances of patterns; moulding processes and their characteristics; moulding materials; gating and risering; melting furnaces; casting defects. Welding: Welding processes; welding energy sources and their characteristics; fluxes and coatings; weldability and welding of various metals and alloys; metallurgical characteristics of welded joints; weld testing and inspection. Forming: Classification of metal forming processes; basic metal working concepts and plasticity; yield criterion; slip line fields; estimation of force and energy requirements;

technology of bulk and sheet metal forming processes; precision forming processes; various features of different types of metal forming dies; principles of powder forming.

Text/ Reference Books:

- 1. Kalpakjin S, Manufacturing Engineering and Technology, Pearson Education.
- 2. Rao P.N., Manufacturing Technology, Tata McGraw Hill.
- 3. Jain R.K., Production Technology, Khanna Publishers.
- 4. Lindberg, Process and materials of manufacturing, Pearson Education.
- 5. Heine R. W., Loper C. R. and Rosenthal P. C., Principles of Metal Castings, Tata McGraw Hill.
- 6. Parmar R. S., Welding Process and Technology, Khanna Publishers.
- 7. Sharma P. C., A Textbook of Production Technology, S Chand.
- 8. Dalela S., and Shankar R., Production Engineering, Galgotia Publications Pvt. Ltd.

Subject Code: ME3L004Name: Systems & ControlL-T-P: 3-0-0Credit: 3Pre-Requisite: None

Introduction to Control Systems: Definition, Examples of control systems, Open loop and closed-loop control systems.

System Modeling: Signal flow graph, Block diagram, Transfer function, Poles and zeros, Block diagram and signal flow reduction techniques, Mathematical modeling of Mechanical, electrical and electromechanical systems, First and second order models.

Control System Types: Introduction, Linear approximation of nonlinear systems, Hydraulic systems, Pneumatic systems, Thermal systems

Time Response Analysis: Definitions of transient response parameters, analysis of first and second order system, Classification of systems, Steady state error analysis, Stability Analysis of system, Definition of BIBO stability, Routh-Hurwitz stability criterion

Frequency Response Analysis: Bode diagram, Polar plot, Nichols plot, Nyquist stability criterion, Nonmathematical description of Nyquist criterion, interpretation of stability, Relative stability – Gain and Phase margin.

Analysis of Closed Loop Systems: Root Locus Method, Properties of root locus, Sketching of root locus, Effect of open loop poles and zeros, Root locus design concepts.

State Space Analysis: Introduction, Modeling of systems using state space approach, Equivalence between poles and eigenvalues.

Text/ Reference Books:

- 1. R. Stefani, B. Shahrian, C. Savant & G. Hostetter, "Design of Feedback Control Systems", Oxford University Press, 2002.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall, 1997.
- 3. B. C. Kuo & F. Golnaraghi, "Automatic Control Systems", John Wiley, 2003.
- 4. M. Gopal, "Control Systems: Principles and Designs", 2nd Edition, McGraw Hill, 2002.
- 5. R. C. Dorf & R. H. Bishop, "Modern Control Systems", Prentice Hall, 2000
- 6. Norman S. Nise, "Control Systems Engineering", Wiley India.

- ,	, , ,				
Subject Code: ME3P001	Name: Thermo-Fluid Lab	L-T-P: 0-0-	Credit: 2		
	- 1	3			
Pre-Requisite: None	Pro Roquisito: Nono				

Linear and radial heat conduction, Heat transfer through extended surfaces, Determination of heat transfer coefficient in free and forced convection, Experiments to verify various radiation

heat transfer laws, Parallel and counter flow heat exchangers: LMTD and temperature distribution, Radiation error in temperature measurement.

Subject Code:	Name: Casting, Welding and	L-T-P: 0-0-	Credit: 2		
ME3P002	Forming Laboratory	3			
Pre-Requisite: None					
Casting: Practice on CAL	O of gating and riser, Experiment to deter	rmine the effec	t of		
moulding variables in sa	nd moulds, To determine the effect of m	ould additive o	on the		
properties of castings, To	determine the characteristics of base sat	nds. Welding: S	Study of		
arc characteristics in sim	ulated MMA welding; arc gap-arc voltag	ge relationship;	recording		
of voltage oscillograms a	nd its study. Study of heat flow and tem	perature distri	bution in		
welding, Study of charac	teristics of TIG/MIG welding, Ultrasoni	c/dye penetra	nt		
inspection or computer s	imulation of welding heat flow/analysis	s of arc-voltage	pattern.		
Forming: Experiments or	n formability test, powder compaction; s	trip layout for			
progressive die design.	progressive die design.				
Subject Code:	Name: Machine Design Practice	L-T-P: 0-0-3	Credit: 2		
ME3P003					
Pre-Requisite: None					
Design and Drawing of S	Simple Machine Elements; Assembly Dra	wings; Use of	CAD		
softwares that allows development of three-dimensional (3-D) designs; Introduction and					

Application of Engineering based softwares for Mechanical Engineering Applications.

Semester-VI

Subject Code: ME3L005	Name: IC Engines	L-T-P: 3-0-0	Credit: 3	
Pre-Requisite: None				
Engine Classification, Compone	nts, Carnot Cycle, Stirling Cycle	, Ericsson Cycle,	Lenoir	
Cycle, Atkinson Cycle, Air stand	lard Cycles: Otto, Diesel and Du	al cycles, Fuel-A	ir and	
Actual cycles' comparison. Worl	king principles and comparison	of 2-stroke and 4	-stroke SI &	
CI engines, Valve Timing Diagra	am. Important Qualities and Rat	ings of SI & CI E	ngine Fuels,	
Dopes, Gas Turbine Fuels. Mag	neto Ignition System, Battery Ig	nition System an	d Modern	
Ignition System for S.I. Engines,	Ignition Timing. Combustion ir	sI & CI Engines	: Stages of	
combustion, Ignition lag and fac	tors affecting the lag, Flame pro	pagation and fac	tors	
affecting the propagation in SI e	ngine, Abnormal combustion, D	etonation or Kno	ocking,	
Factors affecting knocking, Effective	cts of knocking, Control of Knoc	king, Combustio	n Chambers.	
Simple Carburetor, Drawbacks,	Simple Carburetor, Drawbacks, Complete Carburetor, Compensation. Fuel Injection of CI			
and SI Engines: Introduction, Requirement and Types of Injection System, MPFI System in SI				
engine. Engine Heat Transfer, Engine cooling and lubrication: Principle and description.				
Supercharging of SI and CI engines, Effect of supercharging, Limitation of supercharging,				
Superchargers. Performance Par	ameters, Measurements & Testi	ng of I C Engines	s, Engine	
Indicator and its use, Heat balar	ce. Pollutant Formation & its Co	ontrol.	-	
and SI Engines: Introduction, Re engine. Engine Heat Transfer, E Supercharging of SI and CI engi Superchargers. Performance Par	equirement and Types of Injectic ngine cooling and lubrication: P nes, Effect of supercharging, Lir rameters, Measurements & Testi	on System, MPFI rinciple and desc nitation of super ng of I C Engines	System in S rription. charging,	

- 1. Taylor C.F., Internal-combustion engine in theory and practice, Cabridge University Press.
- 2. Ferguson C.R., and Kirkpatrick A.T., Internal combustion engines: Applied Thermosciences, John Wiley & Sons.
- 3. Heywood J.B., Internal combustion engine fundamentals, McGraw-Hill.

	ternal combustion engines, McGraw-Hill.		
5. Rogowski A.R.	, Elements of internal-combustion engines, Me	cGraw-Hill.	
0.11. (0.1			
Subject Code: ME3L006	Name: Refrigeration & Air Conditioning	L-T-P: 3-0-0	Credit: 3
Pre-Requisite: No			
	les; Thermodynamic analysis of vapour-comp	ression aircraft	ofrigeration
	ion and optimization of multistage and cascad		
	and condenser selection; Vapour absorption		
	tistage refrigeration; Load calculations; Design		
refrigeration unit.			
0	conditioning; Principles of psychrometry, psy	chrometry of air	conditioning
5	t chart, indoor and outdoor design conditions		0
•	Ũ		0
Text/ Reference B	ooks:		
	rigeration and Air Conditioning, Prentice Hall		
	nd Jones J.W., Refrigeration and Air Conditior	ning, McGraw-Hi	ll Publishing
Company.	a similar of Dafnizanation Willow		
-	nciple of Refrigeration, Wiley. rigeration and Air Conditioning, McGraw-Hi	11	
	frigeration and Air Conditioning, S. K. Katari		
5. Rajput R.R., Re	ingeration and 7th Conditioning, 5. N. Ratari	a & 50115.	
Subject Code:	Name: Machine Tools & Machining	L-T-P: 3-0-0	Credit: 3
ME3L007			
Pre-Requisite: No	one		·
Machine tools: - C	Concept and definition of machining and mach	nine tools. Histor	y of
developments of a	machine tools. Kinematic schemes of machine	tools, Concept of	f producing
	ces by generatrix and directrix. Kinematic syst		
	hine tools. Electromechanical and hydraulic d		
	ol automation. Classification and specification		
Construction, working principle and application of various semi-automatic and automatic			

lathes. Flexible automation: need, principle and advantages.

Machining: - Tool geometry, mechanism of chip formation. Mechanics of machining. Cutting temperature: causes, effects, estimation, measurement and control. Cutting fluid applications. Failure modes, wear and life of cutting tools. Cutting tool materials. Role of geometrical and process parameters and cutting fluid on machinability. Mechanics of grinding. Economy of machining and grinding. Special techniques and advanced technology of machining and grinding.

Text/ Reference Books:

1. Rao P.N., Manufacturing Technology, metal cutting & Machine tools, Tata McGraw-Hill.

- 2. Boothroyd G., Fundamentals of metal machining and machine tools, Taylor & Francis.
- 3. Jain R.K., and Gupta S.C., Production Technology, Hindustan Machine Tools.
- 4. Hazra Chowdary S.K., Elements of Workshop Technology Vol II, Media Promoters.
- 5. Ghosh A., and Mallik A.K., Manufacturing science, East-West Press.

Subject Code: MF31 008	Name: Power Plant Engineering	L-T-P: 3-0-0	Credit: 3	
	ne			
degree of regenera Boilers: Different t boiler energy bala - theory and desig turbines, optimum steam turbines, ste cooling tower. Flu Centrifugal pump Text/ Reference B 1. El-Wakil M.M., 2. Nag P.K., Powe 3. Veatch B., Drba CBS Publishers 4. Rajput R.K., A 5. Som S.K., and F	wer Plant, Analysis of steam cycles, optimize ation, coupled cycles and combined plants, p types of boilers, boiler mountings & accessor nce & draft system. Nozzles; convergent and n. Steam Turbines: Impulse and reaction turl n velocity ratio, reheat factor and condition li eam turbine governing. Theory and design of id Power & Machinery: Similarity, Euler equ , Hydraulic turbines, Cavitation. ooks: Power Plant Technology, McGraw-Hill Scien er Plant Engineering, Tata McGraw Hill Publ 1 L.F., Boston P.G., Westra K.L., Erickson R.E Fextbook of Power Plant Engineering, Laxmi Biswas G., Introduction to Fluid Mechanics an	rocess heat and p les, feed water tr convergent-dive pines, compound ne, parallel exha condensers, air ation for Turbo- nce/Engineering shing Company p, Power Plant E Publication.	power. reatment, ergent nozzles ling of ust, losses in ejector and machines, y/Math. Limited. ngineering,	
McGraw Hill Publishing Company Limited.				
Subject Code:	Name: Thermo-Fluid Lab - 2	L-T-P: 0-0-3	Credit: 2	
Subject Code: ME3P004	Name: Thermo-Fluid Lab - 2	L-T-P: 0-0-3	Credit: 2	
ME3P004 Pre-Requisite: No	ne			
ME3P004 Pre-Requisite: No Study of I.C. Engin	ne ne models, Load test on a Petrol engine, Loac	l test on a Diesel	engine and	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mo	ne ne models, Load test on a Petrol engine, Loac ulti-cylinder engine. Studies on refrigerant co	l test on a Diesel ompressors. Exp	engine and erimental	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mo observations on a	ne ne models, Load test on a Petrol engine, Loac ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation	l test on a Diesel ompressors. Expo o of a vapour con	engine and erimental mpression	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mu observations on a refrigeration syste	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air conditio	l test on a Diesel ompressors. Expo n of a vapour con ning system Pre	engine and erimental mpression ssure	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mu observations on a refrigeration syste distribution for flo	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air conditio w over a cylinder, measurement of velocity	l test on a Diesel ompressors. Expo n of a vapour con ning system Pre profile in the boo	engine and erimental mpression ssure undary layer,	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mo observations on a refrigeration syste distribution for flo characteristics of a	ne ne models, Load test on a Petrol engine, Loac ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition w over a cylinder, measurement of velocity convergent-divergent nozzle and characteri	l test on a Diesel ompressors. Expo n of a vapour con ning system Pre profile in the bou stics of a centrifu	engine and erimental mpression ssure undary layer, 1gal fan.	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mu observations on a refrigeration syste distribution for flo	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air conditio w over a cylinder, measurement of velocity	l test on a Diesel ompressors. Expo n of a vapour con ning system Pre profile in the boo	engine and erimental mpression ssure undary layer,	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mo observations on a refrigeration syste distribution for flo characteristics of a Subject Code:	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition ow over a cylinder, measurement of velocity convergent-divergent nozzle and characteri Name: MTM Laboratory	l test on a Diesel ompressors. Expo n of a vapour con ning system Pre profile in the bou stics of a centrifu	engine and erimental mpression ssure undary layer, 1gal fan.	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a me observations on a refrigeration systed distribution for flo characteristics of a Subject Code: ME3P005 Pre-Requisite: No	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition ow over a cylinder, measurement of velocity convergent-divergent nozzle and characteri Name: MTM Laboratory	l test on a Diesel ompressors. Expon of a vapour con ning system Pre profile in the bou stics of a centrifu L-T-P: 0-0-3	engine and erimental mpression ssure undary layer, ugal fan. Credit: 2	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mo- observations on a refrigeration systed distribution for flo characteristics of a Subject Code: ME3P005 Pre-Requisite: No Machine tools: 1.4 compliance of mac	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition ow over a cylinder, measurement of velocity convergent-divergent nozzle and characteri Name: MTM Laboratory ne Acceptance test of machine tool (radial drillir chine tool (center lathe). Machining: 3. Resha	l test on a Diesel ompressors. Expo n of a vapour con ning system Pre profile in the bou stics of a centrifu L-T-P: 0-0-3	engine and erimental mpression ssure undary layer, 1gal fan. Credit: 2	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mu observations on a refrigeration syste distribution for flo characteristics of a Subject Code: ME3P005 Pre-Requisite: No Machine tools: 1. A compliance of mac specific geometry	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition ow over a cylinder, measurement of velocity is a convergent-divergent nozzle and characteri Name: MTM Laboratory ne Acceptance test of machine tool (radial drillir chine tool (center lathe). Machining: 3. Resha 4. Measurement of cutting forces and surface	l test on a Diesel ompressors. Exponse of a vapour conning system Pre profile in the boustics of a centrifu stics of a centrifu L-T-P: 0-0-3	engine and erimental mpression ssure undary layer, igal fan. Credit: 2 //stem ing tool to g, drilling and	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a minimized observations on a refrigeration systed distribution for floc characteristics of a Subject Code: ME3P005 Pre-Requisite: No Machine tools: 1. A compliance of mac specific geometry milling 5. Measure	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition wover a cylinder, measurement of velocity (a convergent-divergent nozzle and characteric Name: MTM Laboratory ne Acceptance test of machine tool (radial drillir chine tool (center lathe). Machining: 3. Resha 4. Measurement of cutting forces and surface ement of cutting temperature and tool life in	l test on a Diesel ompressors. Exp n of a vapour con ning system Pre profile in the bou stics of a centrifu L-T-P: 0-0-3 ag machine) 2. Sy prpening of turni turning 6. Measu	engine and erimental mpression ssure undary layer, ugal fan. Credit: 2 // // // // // // // // // // // // //	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a minimized observations on a refrigeration systed distribution for floc characteristics of a Subject Code: ME3P005 Pre-Requisite: No Machine tools: 1. A compliance of made specific geometry milling 5. Measure grinding forces an	ne me models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition ow over a cylinder, measurement of velocity convergent-divergent nozzle and characteri Name: MTM Laboratory Me Acceptance test of machine tool (radial drillir chine tool (center lathe). Machining: 3. Resha 4. Measurement of cutting forces and surface ement of cutting temperature and tool life in d surface finish in grinding 7. Machine settir	l test on a Diesel ompressors. Expon of a vapour con ning system Pre profile in the boo stics of a centrifu L-T-P: 0-0-3 g machine) 2. Sy repening of turnin turning 6. Measu og and operation	engine and erimental mpression ssure undary layer, igal fan. Credit: 2 ////////////////////////////////////	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mu observations on a refrigeration systed distribution for flo characteristics of a Subject Code: ME3P005 Pre-Requisite: No Machine tools: 1. A compliance of mac specific geometry milling 5. Measure grinding forces an gear teeth cutting.	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition ow over a cylinder, measurement of velocity convergent-divergent nozzle and characteric Name: MTM Laboratory ne Acceptance test of machine tool (radial drillin chine tool (center lathe). Machining: 3. Resha 4. Measurement of cutting forces and surface ement of cutting temperature and tool life in d surface finish in grinding 7. Machine settir Metrology: 8. Inspection of straightness and	l test on a Diesel ompressors. Expon of a vapour con ning system Pre profile in the bou stics of a centrifu L-T-P: 0-0-3 g machine) 2. Sy rpening of turnin finish in turnin turning 6. Measu g and operation flatness of surfa	engine and erimental mpression ssure undary layer, igal fan. Credit: 2 // // // // // // // // // // // // //	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mu observations on a refrigeration systed distribution for flo characteristics of a Subject Code: ME3P005 Pre-Requisite: No Machine tools: 1. A compliance of mac specific geometry milling 5. Measured grinding forces an gear teeth cutting. Measurement of a	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition w over a cylinder, measurement of velocity a convergent-divergent nozzle and characteri Name: MTM Laboratory ne Acceptance test of machine tool (radial drillir chine tool (center lathe). Machining: 3. Resha 4. Measurement of cutting forces and surface ement of cutting temperature and tool life in d surface finish in grinding 7. Machine settir Metrology: 8. Inspection of straightness and ngles 9. Measurement of external and interna	l test on a Diesel ompressors. Expon of a vapour con ning system Pre profile in the bou stics of a centrifu L-T-P: 0-0-3	engine and erimental mpression ssure undary layer, igal fan. Credit: 2 //stem ing tool to g, drilling and urement of for helical nees ection of screw	
ME3P004 Pre-Requisite: No Study of I.C. Engin Morse test on a mu observations on a refrigeration syste distribution for flo characteristics of a Subject Code: ME3P005 Pre-Requisite: No Machine tools: 1. A compliance of mac specific geometry milling 5. Measured grinding forces an gear teeth cutting. Measurement of a	ne ne models, Load test on a Petrol engine, Load ulti-cylinder engine. Studies on refrigerant co refrigeration test-rig. Performance evaluation m. Performance evaluation of an air condition wover a cylinder, measurement of velocity (convergent-divergent nozzle and characteri Name: MTM Laboratory ne Acceptance test of machine tool (radial drillir chine tool (center lathe). Machining: 3. Resha 4. Measurement of cutting forces and surface ement of cutting temperature and tool life in d surface finish in grinding 7. Machine settir Metrology: 8. Inspection of straightness and ngles 9. Measurement of external and interna- tion of gear teeth 12. Measurement of roundr	l test on a Diesel ompressors. Expon of a vapour con ning system Pre profile in the bou stics of a centrifu L-T-P: 0-0-3	engine and erimental mpression ssure undary layer, igal fan. Credit: 2 //stem ing tool to g, drilling and urement of for helical nees ection of screw	

Lateral Subject Syllabus (I, II and III)

Lateral-I

Subject Code: ME2L501	Name: Elements of Mechanical Engineering	L-T-P: 3-1-0	Credit: 4			
Pre-Requisite: None			I			
Engineering Materials: Classification of Engineering Materials, Mechanical Properties,						
Ferrous & Nonferrous materials, Composite materials, Testing of Materials.						
-	troduction, Laws of Thermodynamics	· · · · · · · · · · · · · · · · · · ·				
	nt of heat, Internal energy, Enthalpy, E					
	Transfer, Properties of Gas and Steam, Steam Boilers and Turbines, Refrigeration and Air					
Conditioning, Thermodynamic Cycles, IC Engines.						
	chinery: Properties of fluid, Pascal lav					
-	etween Atmospheric, Absolute Gauge					
	r and Turbulent Flow, Pumps, Air Co	mpressors, Turb	ines, Hydro-			
	, Hydraulic Machines.		F 1			
	achine Tools: Measurement of Engine	0				
	rement, Measuring Instruments and I					
	d Drives: Shafts, Keys, Couplings, Bea	arings, Flywheel,	Governor,			
beit drive, Chain driv	e, Gear trains, clutch and brakes.					
Text/ Reference Book	(S:					
 Tata McGraw - Hill Education. Bevan T., The Theory of Machines, Pearson. Kalpakjian S., and Schmid S.R., Manufacturing Engineering and Technology, Pearson. Cimbala J.M., and Cengel Y.A., Fluid Mechanics: Fundamentals and Applications (In SI Units), Tata McGraw - Hill Education. Ganesan V., Internal Combustion Engines, Tata Mc-Graw Hill Publishing Co. Ltd. Beckwith T.G., Mechanical Measurements, Pearson. 						
Lateral-II Subject Code:	Name: Applied Thermodynamics	L-T-P: 3-0-0	Credit: 3			
ME3L501						
Pre-Requisite: None						
Second law of Therma refrigeration cycles - I superheating, Proper	amics, First law for a closed system; S odynamics, Entropy; Refrigeration: M RC cycle, single stage saturation cycle ties of refrigerants. Reciprocating com nt. Multistage, multi-evaporator and c	echanical vapor , effects of sub-co pressor- volume ascade refrigerat	compression ooling and tric efficiency ion cycles. Gas			

Text/ Reference Books:

- 1. Boles M.A., and Cengel Y.A., Thermodynamics: An Engineering Approach, Tata McGraw Hill Education.
- 2. Nag P.K., Engineering Thermodynamics, Tata McGraw Hill.
- 3. Cengel Y., Heat Transfer: A Practical Approach, McGraw-Hill Professional.
- 4. Incropera, Bergman, and DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons Inc.
- 5. Arora C.P., Refrigeration and Air-Conditioning, Tata McGraw Hill.
- 6. Stoecker W.F. and Jones J.W., Refrigeration and Air-Conditioning, McGraw-Hill.
- 7. Nag P.K., Power Plant Engineering, Tata McGraw Hill.
- 8. Taylor C.F., Internal-combustion engine in theory and practice, Cabridge University Press.

Subject Code: ME3L502	Name: Introduction to	L-T-P: 3-0-0	Credit: 3
	CAD/CAM		

Pre-Requisite: None

Introduction, product life cycle, I/O and storage devices, 3D transformations, clipping, hidden surface removal, geometric modeling, curve and surface representation methods, basic geometric commands. Introduction to NC, CNC and DNC, part programming, group technology, flexible manufacturing system and computer aided quality control.

Text/ Reference Books:

- 1. Zimmers & Groover P., CAD/CAM, PE/PHI Publishers.
- 2. Zeid I., CAD / CAM Theory and Practice, Tata McGraw Hill.
- 3. Rao P.N., CAD/CAM principles and applications, Tata McGraw Hill.
- 4. Korean Y., Computer control of Machine Tools and Processes.
- 5. Groover, Automation, Production systems & Computer integrated Manufacturing, Pearson Education.
- 6. Amirouche F., Principles of Computer Aided Design and Manufacturing, Pearson Education.
- 7. Seames W.S., Computer Numerical Control Concepts and programming, Thomson Learning.

Lateral-III					
Subject Code:	Name: Introduction to Robotics	L-T-P: 3-0-0	Credit: 3		
ME3L503					
Pre-Requisite: None					
robot joints, coordina characteristics of actu feed-back component representation, representation, representat	ics, classification of robots, robot comp tes, work space analysis, robot languag ation systems, hydraulic, pneumatic an s, position sensors, velocity sensors; Ro sentation of a frame and rigid body, ho l inverse kinematics of robots, Denavit vard kinematic equations of robots, inv trajectory planning.	ges, applications nd electric actua obot as a mecha omogeneous tran -Hartenberg (D	s of robots, ation systems, nism, matrix nsformation -H)		

- 1. Ghosal A., Robotics: Fundamental concepts and analysis, Oxford university press.
- 2. Groover M.P., Industrial Robotics, Pearson Education.
- 3. Mittal R.K., and Nagrath I.J., Robotics and Control, Tata Mc-Graw Hill.
- 4. Fu K., Gonzalez R., and Lee C. S. G., Robotics: Control, sensing, vision and intelligence, McGraw Hill.
- 5. Klafter R.D., Robotic Engineering, Prentice Hall.
- 6. Craig J.J., Introduction to Robotics, Pearson Education.
- 7. Spong M.W., and Vidyasagar M., Robot Dynamics & Control, John Wiley & Sons (ASIA) Pte Ltd.
- 8. Saha S.K., Introduction to robotics, Tata Mc-Graw Hill.
- 9. Jazar R.N., Theory of applied robotics, kinematics, dynamics and control, Springer.

Subject Code:	Name: Industrial	L-T-P: 3-0-0	Credit: 3
ME3L504	Engineering &		
	Management		

Pre-Requisite: None

Introduction to Industrial Engineering, Productivity, ways to improve productivity, time study, work measurement, Ergonomics, types of Production systems, Plant Layouts, Assembly lines, plant locations, product life cycle, design process of product, rapid prototyping, break even analysis, profit volume graph, quality control, total quality management, ISO, statistical quality control, acceptance sampling, Forecasting, Forecasting Techniques, scheduling, Material resource planning, inventory control, inventory models, EOQ, Safety Stock, ABC Analysis, JIT, project management, PERT and CPM, Project crashing, Reliability and maintenance, Replacement, Principle of management, organization charts, job evaluation, merit rating, wage incentive systems.

Text/ Reference Books:

- 1. Shankar R., Engineering, Galgotia Publication.
- 2.Salvendy G., Handbook of Industrial Engineering: Technology and Operations Management, Wiley publication.
- 3. Buffa, Modern production/operations management, Wiley India.
- 4. Krajewski, Operations management, Pearson Education.

Elective Subject (I) Syllabus

Subject Code: ME3L012	Subject Name: Operations Research	L-T-P: 3-0-0	Credit: 3			
Pre-Requisite: None	Pre-Requisite: None					
Introduction of Operation	Introduction of Operations Research, Applications of OR, Linear Programming:					
Formulation Linear Programming, Graphical method, Simplex method, Duality,						
Sensitivity Analysis, Transportation problem: Initial basic feasible solution, Optimality						
test, Special cases of Assignment Problem, Integer Linear Programming, Branch and						
-	ing Problem, Game Theory: two person	0				

Games with mixed strategy, Project scheduling: CPM, PERT, Project Crashing, Multi Criteria Decision Making Tools, Queuing Theory: multiple server models, Simulation.

Text/ Reference Books:

- 1. Hillier F.S., and Lieberman G.J., Introduction to Operations Research, Tata McGraw Hill, New York.
- 2. Taha H.A., Operations Research: An Introduction, Prentice-Hall, New York.
- 3. Winston W.L., Operations Research: Applications and Algorithms, Duxbury Press, Belmont.
- 4. Ravindran and Phillip, Operations Research, Wiley publication.

Subject Code:	Subject Name: Computational	L-T-P: 3-0-0	Credit: 3
ME3L013	Fluid Dynamics		

Pre-Requisite: Fluid Mechanics

Basic conservation equations for fluid flow and heat transfer, classification of partial differential equations and pertinent physical behavior, parabolic, elliptic and hyperbolic equations, role of characteristics; Common methods of discretisation: an overview of finite difference and finite volume methods; Numerical solution of parabolic partial differential equations using finite-difference and finite-volume methods: explicit and implicit schemes; Consistency, stability and convergence; Numerical solution of systems of linear algebraic equations: iterative methods, tridiagonal matrix algorithm, Jacobi and Gauss-Seidel iterations, necessary and sufficient conditions for convergence of iterative schemes; The finite volume method of discretisation for diffusion problems; Numerical solution of the Navier-Stokes system for incompressible flows.

- 1. Patankar S.V., Numerical Heat Transfer and Fluid Flow, Taylor and Francis.
- 2. Versteeg H.K., and Malalasekera W., Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Publisher.
- 3. Tannehill J.C., Anderson D.A., and Pletcher R.H., Computational Fluid Mechanics and Heat Transfer, Taylor and Francis Group.
- 4. Anderson Jr. D.A., Computational Fluid Dynamics, McGraw-Hill Publisher.
- 5. Smith G.D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press.

Subject Code: ME3L014	Subject Name: Robotics	L-T-P: 3-0-0	Credit: 3		
Pre-Requisite: None					
Introduction, brief history	Introduction, brief history, components, types and classification of robots, Homogeneous				
transformations, representation of joints and links using D-H parameters, direct and					
inverse kinematics of manipulators, examples of kinematics of some common					
manipulator configurations, Jacobian and dynamics of manipulators, trajectory planning;					
Purpose and types of sensors, Internal and external sensors, common sensors-					
displacement sensors, velo	ocity sensors, force sensors and vis	sion, necessity of	actuators,		

different kinds of actuators – stepper motors, DC servo and brushless motors, programming of robots.

Text/ Reference Books:

- 1. Ghosal A., Robotics: Fundamental concepts and analysis, Oxford university press.
- 2. Groover M.P., Industrial Robotics, Pearson Education.
- 3. Mittal R.K., and Nagrath I.J., Robotics and Control, Tata Mc-Graw Hill.
- 4. Fu K., Gonzalez R., and Lee C. S. G., Robotics: Control, sensing, vision and intelligence, McGraw Hill.
- 5. Klafter R.D., Robotic Engineering, Prentice Hall.
- 6. Craig J.J., Introduction to Robotics, Pearson Education.
- 7. Spong M.W., and Vidyasagar M., Robot Dynamics & Control, John Wiley & Sons (ASIA) Pte Ltd.
- 8. Saha S.K., Introduction to robotics, Tata Mc-Graw Hill.
- 9. Jazar R.N., Theory of applied robotics, kinematics, dynamics and control, Springer.

Subject Code:	Subject Name: Intermediate Fluid	L-T-P: 3-0-0	Credit:
ME3L015	Mechanics		3

Pre-Requisite: Fluid Mechanics

Review: Differential form of Conservation Equations of Mass, Momentum & Energy, N-S Equations for Incompressible Flows; Velocity Potential, Stream-function; Vorticity & Circulation; Potential Flows – Elementary plane flows, superposition, plane flow past closed body shapes, flow past cylinder (Lifting & Non-lifting) – lift & drag, Complex Potential & Conformal mapping, Image & Reflections, Applications to plane flows; Vortex Lines, Kelvin-Helmhotz Theorems, Biot-Savart Law & Induced Velocity; Airfoil theory – Kutta conditions, lifting-line theory; Boundary Layer – Equations, Approximate & Exact solutions; Introduction to Stability, Transition & Turbulence.

- 1. White F.M., Fluid Mechanics, Tata McGraw Hill Publishing Company Limited.
- 2. Anderson J.D., Fundamentals of Aerodynamics, McGraw Hill.
- 3. Fox R.W., and McDonald A.T., Introduction to Fluid Mechanics, John Wiley & Sons, Inc.
- 4. Panton R.L., Incompressible Flow, Wiley.
- 5. White F.M., Viscous Fluid Flow, McGraw-Hill.
- 6. Schlichting H., and Gersten K., Boundary Layer Theory, Springer.
- 7. Kundu P.K., and Cohen I.M., Fluid Mechanics with Multimedia DVD, AP / Elsevier.
- 8. Munson B.R., Young D.F., Okiishi T.H., and Huebsch W.W., Fundamentals of Fluid Mechanics, Wiley.

B. TECH DEGREE (7th SEMESTER AND 8th SEMESTER COURSES) MECHANICAL ENGINEERING

	SEMESTER - VI	Ι			
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.
Elective - 2	ME4LXXX/ ME6LXXX	3-0-3	5	6	
Elective – 3	ME4LXXX/ ME6LXXX	3-0/1-0	3/4	3/4	
Breadth - 2		3-0/1-0	3/4	3/4	
Summer Training	ME4T001	0-0-3	2	3	
Project – Part 1	ME4D001	0-0-6	4	6	
		Total	17/19	21/23	
	SEMESTER - VI	II			
Breadth - 3	XXX XXXX	3-0-0	3	3	
Breadth - 4	XXX XXXX	3-0/1-0	3/4	3/4	
Elective – 4	ME4LXXX/ ME6LXXX	3-0/1-0	3/4	3/4	
Elective – 5	ME4LXXX/ ME6LXXX	3-0-0	3	3	
Project – Part 2	ME4D002	0-0-9	6	9	
		Total	18/20	21/23	
		G. Total	177/185	205/207	

BTECH 7TH AND 8TH SEMSEMTER ELECTIVES LIST

ELECTIVE II						
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus	
					Page No.	
Computer Aided Design and Manufacturing	ME4L002	3-0-3	5	6	50	
Advanced Manufacturing Processes	ME4L004	3-0-3	5	6	50	
Experimental Techniques for Thermo-Fluids Applications	ME6L115	3-0-3	5	6	65	
Non-Conventional Energy Systems	ME6L116	3-0-3	5	6	65	
Design and Experimental Analysis of welded Joints	ME6L311	3-0-3	5	6	80	
Metal Forming Theory and Practice	ME6L312	3-0-3	5	6	81	
	ELECTIVES	III, IV, and	d V			
					Syllabus	
Subject Name	Code	L-T-P	Credit	Contact Hour	Page No.	
					I age 110.	
Air-Conditioning and Ventilation	ME4L005	3-0-0	3	3	51	
Supply Chain Management	ME4L006	3-0-0	3	3	51	
Automobile Engineering	ME4L009	3-0-0	3	3	52	
Quality Control	ME4L010	3-0-0	3	3	52	
Work System Design	ME4L011	3-0-0	3	3	52	
Tribology	ME6L005	3-1-0	4	4	54	
Engineering Design Optimization	ME6L007	3-0-0	3	3	54	
Sensing and Actuation	ME6L008	3-0-0	3	3	54	
Engineering Measurements	ME6L009	3-1-0	4	4	55	
Operations Management	ME6L010	3-0-0	3	3	55	
Finite Element Methods in Engineering	ME6L011	3-1-0	4	4	56	
Acoustics	ME6L012	3-1-0	4	4	56	
Robotics and Automation	ME6L013	3-0-0	3	3	56	
Introduction to Nonlinear Dynamics	ME6L014	3-0-0	3	3	57	
Industrial Noise Control	ME6L053	3-0-0	3	3	58	
Experimental Stress Analysis	ME6L056	3-0-0	3	3	59	
Theory of Composite Materials	ME6L057	3-0-0	3	3	59	

Experimental Modal Analysis	ME6L058	3-0-0	3	3	59
Soft Computing and Applications	ME6L060	3-1-0	4	4	60
MEMS & Microsystems Technology	ME6L062	3-0-0	3	3	60
Reverse Engineering	ME6L063	3-0-0	3	3	61
Fracture Mechanics	ME6L064	3-1-0	4	4	61
Computational Methods in Thermal & Fluid Engineering	ME6L102	3-1-0	4	4	62
Conduction & Radiation Heat Transfer	ME6L104	3-0-0	3	3	63
Air-Conditioning and Ventilation	ME6L107	3-0-0	3	3	63
Two Phase Flow Heat Transfer	ME6L112	3-0-0	3	3	63
Spectral Methods for Engineering & Scientific Computing Applications	ME6L113	3-0-0	3	3	64
Solar Energy	ME6L114	3-0-0	3	3	64
Introduction to Atmospheric Radiation	ME6L117	3-0-0	3	3	66
Statistical Thermodynamics	ME6L118	3-0-0	3	3	67
Micro/Nano Scale Heat Transfer	ME6L119	3-0-0	3	3	67
Mathematical Methods for Mechanical Engineers	ME6L120	3-0-0	3	3	67
Structural Health Monitoring	ME6L121	3-0-0	3	3	68
Convective Heat & Mass Transfer	ME6L153	3-0-0	3	3	69
Conduction and Change of Phase Heat Transfer	ME6L154	3-0-0	3	3	70
Turbulence	ME6L155	3-0-0	3	3	70
Refrigeration Systems	ME6L156	3-0-0	3	3	71
Transport Phenomenon in Material Processing	ME6L157	3-0-0	3	3	71
Boiling and Condensation	ME6L158	3-0-0	3	3	72
Heat and Mass Transfer in Biological Systems	ME6L159	3-0-0	3	3	72
Microfluidics	ME6L160	3-0-0	3	3	73
Experimental Fluid Mechanics	ME6L161	3-1-0	4	4	73
Nuclear Power, Generation & Safety	ME6L162	3-0-0	3	3	74
High Performance Computing in Thermo-Fluids Applications	ME6L163	3-0-0	3	3	74
Numerical Methods in Radiative	ME6L164	3-0-0	3	3	74

Heat Transfer					
Principles of Turbo Machinery	ME6L165	3-0-0	3	3	75
Geophysical Fluid Dynamics	ME6L166	3-0-0	3	3	75
Design of Heat Exchangers	ME6L167	3-0-0	3	3	75
Lattice Boltzmann Modelling	ME6L168	3-0-0	3	3	76
Fluid Structure Interaction and Separated Flows	ME6L169	3-0-0	3	3	76
Analytical Combustion	ME6L170	3-0-0	3	3	76
Applications of Linear Algebra in Mechanical Engineering	ME6L171	3-0-0	3	3	77
Advanced Casting Processes	ME6L313	3-0-0	3	3	82
Solid state joining processes	ME6L314	3-1-0	4	4	83
Quality Engineering and Management	ME6L315	3-0-0	3	3	84
Surface Engineering	ME6L317	3-0-0	3	3	84
Numerical Methods for Manufacturing	ME6L318	3-1-0	4	4	85
Supply Chain Management	ME6L319	3-0-0	3	3	85
Digital Manufacturing	ME6L320	3-1-0	4	4	86
Additive Manufacturing	ME6L331	3-0-0	3	3	87
Factory Automation	ME6L332	3-0-0	3	3	88
Manufacturing Planning and Control	ME6L316	3-0-0	3	3	88
Advanced Tooling Design	ME6L321	3-0-0	3	3	89
Metrology and Computer Aided Inspection	ME6L322	3-1-0	4	4	90
Operations Management	ME6L323	3-0-0	3	3	90
Machine Tool Design	ME6L324	3-1-0	4	4	91
Lasers in Manufacturing	ME6L327	3-1-0	4	4	91
Precision and Micro Manufacturing	ME6L329	3-1-0	4	4	92
Data Analytics	ID6L001	3-0-0	3	3	78
Design and Analysis of Experiments	ID6L002	3-0-0	3	3	78