Table of Content

- 1. Compliance report
- 2. Curriculum for B.Tech. in Electrical Engineering and Dual Degree Program with B.Tech. in Electrical Engineering and M.Tech. in Power Electronics and Drives
- 3. B. Tech and Dual Degree (1st and 2nd Semester Common Courses)
 - a. First Semester courses
 - b. Second Semester Courses
 - c. Syllabus
- 4. B. Tech (3rd Semester 8th Semester Courses)
 - a. Third Eighth Semester courses
 - b. Syllabus for Core Courses
 - c. Elective Courses
 - d. Syllabus for Elective Courses
- 5. Dual Degree (7th 10th Semester Courses)
 - a. Seventh to Tenth Semester Courses
 - b. Syllabus
- 6. Lateral Courses offered to Other Schools
 - a. List of Courses
 - b. Syllabus
- 7. Summary of Course Credits
 - a. B.Tech program
 - b. Dual Degree program

Components	Subjects	Credit Recommended	Credit Approved
	(i) English	4	4
1. Common Core	(ii) Basic Science and Mathematics	20	20
	(iii) General Sciences	6	6
	(iv) Engineering Sciences	27	27
2. Breadth Basket	 (i) Breadth-1 (ii) Breadth-2 (iii) Breadth-3 (iv) Breadth-4 	12-14	3/4 3 3/4 3/4
3. Miscellaneous	(i) Seminar(ii) Internship(iii) Project	14	2 2 10
4. Laterals	(i) Lateral-1(ii) Lateral-2(iii) Lateral-3	9-12	3 3/4 3/4
			2 nd year - 20
5 Martinala	Theory	58-68	3 rd year -23/24
5. Verticals			4 th year - 19/25
	Laboratory	18-24	18
TOTAL		168-189	172/184

Compliance Report (B.Tech. Program)

Curriculum for B. Tech. in Electrical Engineering

&

Dual Degree Programme (B. Tech. in Electrical Engineering and M. Tech. in Power Electronics and Drives)

- 1. The curriculum for 1st and 2nd Semesters are same for all B Tech and dual degree programs.
- The curriculum for (1) B. Tech. Degree in Electrical Engineering and (2) B. Tech. Degree in Electrical Engineering and M. Tech. Degree in Power Electronics and Drives Dual Degree program are same up to 6th Semester.
- 3. For 7th and 8th Semester, the curriculum for B. Tech. program has a combination of core, elective subjects and final year B. Tech. project.
- 4. From 7th up to 10th Semester, there are combination of core and elective subjects for dual degree program. All core subjects of B. Tech and M. Tech Programs are included.
- 5. There are final year B. Tech project part 1 and 2 in both B. Tech and Dual Degree programs.
- 6. In dual degree programme, there are M. Tech Thesis part 1 and 2 in the 9th and 10th Semesters, respectively, similar to M. Tech programs.
- 7. The recommended total credit range for B. Tech program is 168-189. For Dual Degree program the recommended total credit range is 220-225.

SEMESTER – I						
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.	
Mathematics-1	MA1L001	3-1-0	4	4	5	
Physics/ Chemistry	PH1L001/ CY1L001	3-1-0	4	4	6-7	
Mechanics / English for Communications or Learning English	ME1L001/ HS1L001 or HS1L002	3-1-0/ 3-0-2 or 3-1-0	4	4/ 5 or 4	7-10	
Electrical Technology / Introduction to Programing and Data Structures	EE1L001/ CS1L001	3-1-0	4	4	11-12	
Introduction to Manufacturing Processes / Engineering Drawing and Graphics	ME1P001/ CE1P001	0-0-3/ 1-0-3	2/3	3/4	12-13	
Physics Laboratory/ Chemistry Laboratory	PH1P001/ CY1P001	0-0-3	2	3	13-14	
Electrical Technology Laboratory / Introduction to Programing and Data Structures Laboratory	EE1P001/ CS1P001	0-0-3	2	3	14	
Extra Academic Activity-1	ID1T001	0-0-3	1	3		
		Total	22/23+1	25/27 or 26+3		
SE	MESTER	– II				
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.	
Mathematics-2	MA1L002	3-1-0	4	4	15	
Chemistry/ Physics	CY1L001/ PH1L001	3-1-0	4	4	6-7	
English for Communication or Learning English / Mechanics	HS1L001 or HS 1L002/ ME1L001	3-0-2 or 3-1-0/ 3-1-0	4	5 or 4/ 4	7-10	
Introduction to Programming and Data Structures/ Electrical Technology	CS1L001/ EE1L001	3-1-0	4	4	11-12	
Engineering Drawing and Graphics / Introduction to Manufacturing Processes	CE1P001/ ME1P001	1-0-3/ 0-0-3	3/2	4/3	13-14	
Chemistry Laboratory/ Physics Laboratory	CY1P001/ PH1P001	0-0-3	2	3	12-13	
Electrical Technology Laboratory / Introduction to Programing and Data Structures Laboratory	EE1P001/ CS1P001	0-0-3	2	3	14	
Extra Academic Activity -2	ID1T002	0-0-3	1	3		
		Total	23/22+1	27 or 26/25+3		

1st Semester and 2nd Semester (Common to All Disciplines of Study)

Syllabus for each course is given in the following pages.

Syllabus for First Year Courses (Common to All Disciplines of Study)

SEMESTER – I

Subject Code: MA1L001	Subject Name: Mathematics-1	L-T-P: 3-1-0	Credit: 4
Subject Couch MAILOUI	Mathematics-1	3-1-0	

Pre-requisite(s): Nil

Calculus: Rolle's theorem, Lagranges theorem, Cauchy's mean value theorem (Taylor's and Maclaurin theorems with remainders), Indeterminate forms, Concavity and convexity of a curve, points of inflexion, maximum, minimum of a function, 2nd derivative test for max min, Asymptotes and curvature, Cartesian curve tracing, polar curve tracing.

Calculus of Several Variables: Limit, continuity and differentiability of functions of several variables, partial derivatives and their geometrical interpretation, differentials, derivatives of composite and implicit functions, derivatives of higher order and their commutativity, Euler's theorem on homogeneous functions, harmonic functions, Taylor's expansion of functions of several variables maxima and minima of functions

Taylor's expansion of functions of several variables, maxima and minima of functions of several variables, Lagrange's method of multipliers.

Vector Calculus: Double and triple integrals, Scalar and vector fields, level surfaces, directional derivative, Gradient, Curl, Divergence, line and surface integrals, theorems of Green, Gauss and Stokes. Beta and Gamma functions.

Ordinary Differential Equations: First order differential equations, exact, linear and Bernoulli's form, second order differential equations with constant coefficients, Euler's equations, particular integrals by: variation of parameters, undetermined coefficients, operator method, system of differential equations.

Text Books:

1. Narayan S. and Mittal P. K. *Differential Calculus and Integral Calculus*, S. Chand & Company Ltd.

2. Thomas G. B. and Finney R. L. Calculus and Analytic Geometry, Pearson

3. Kreyszig E. Advanced Engineering Mathematics, John Wiley & Sons

5. Simmons G. F. and Robertson J. S. *Differential Equations with applications and Historical notes*, Tata McGraw-Hill Publishing Company Limited, New Delhi, India

Reference Books:

1. Bartle R. G. and Sherbert D. R. Introduction to Real Analysis, Wiley India

2. Jain R. K. and Iyengar S. R. K. Advanced Engineering Mathematics, Narosa

3. Apostol T. M. Calculus - Vol.2, Wiley India

4. Ross S. L. Differential Equations, Wiley India

5. Coddington E. A. An Introduction to Ordinary Differential Equations, Prentice Hall

Su	bject Code:	PH1L001	Subject Name:	Physics	L-T-P: 3- 1-0	Credit: 4
Pre	e-requisite(s): Nil				·
Cla prin equ For tra ma sup Poy inte Bro pro pot mo	Classical Physics: Review of Newtonian mechanics, Lagrangian mechanics, constraints, principle of virtual work, D'Alembert's principle, Action Principle and Lagrange's equations, Velocity dependent potentials, Legendre Transformation and Hamiltonian equations, Central forces, Kepler's problem, Waves and Oscillations, Damped and Forced Oscillations, normal modes, Basics of Special Relativity, Galilean and Lorentz transformations, Time dilation and length contraction, relativistic kinematics and mass-energy equivalence. Electromagnetic Waves and Optics: Maxwell's equations, wave equation, plane electromagnetic waves, longitudinal and transverse waves, superposition, wave packets, two and three dimensional waves, energy- momentum, Poynting's theorem, electromagnetic boundary conditions, Laser, Young's experiment, interferometers, diffraction, Fraunhofer diffraction (single slit), dispersion. Wave Mechanics: Failure of classical physics, qualitative review of relevant experiments, de Broglie waves, uncertainty principle, wave function and Schrodinger equation, probability interpretation, particle on a chain, potential barrier and quantum tunneling, potential well, Harmonic oscillator, operator algebra, Hydrogen atom and angular momentum algebra.					
Te	xt/ Referen	ce Books:				
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Crawford F. Goldstein, G Saleh and T Ghatak A. G Griffiths D. Pain H. J. T Resnick R. Landau L. a Zweibach B Hecht E. In Feynmann Sakurai J.	S. Waves, Vo Classical Mech Teich. Fundam Optics, McGrav I. Introduction The Physics of Introduction to Ind Lifshitz E. A First Cour Introduction to Lecture series J. Modern Qua	ol. 3, Berkely Physics anics, Pole and Safk pentals of Photonics, w-Hill. In to Quantum Mecha Vibrations and Wave o Special Relativity, Mechanics, Oxford rse in String Theory, Optics, Addison-Wes s on Physics. antum Mechanics, Be	s Series. co, Pearson Ed Wiley-Inters nics, Pearson es, Wiley. John Wiley (Cambridge U sley. enjamin-Cum	ducation Inc. cience. n Education I Asia). Jniversity Pro mings.	nc. ess
				 − ⁻	T-D· 3-	

Subject Code: CY1L001	Subject Name: Chemis	try 1-0	Credit: 4
Pre-requisite(s): Nil			
Energetics & Kinetics: (a) Engineering Devices: Effic Basic Rate Laws; Multister Gases in biofluids and acro & non-aqueous) including Concepts & Laws; Battery (and Pourbaix diagram; C Supramolecules, Metals an and optical propertie	Basic Concepts and Law iency & Conversion; Ther p Reactions; Activation En ss biomembranes; Equilibri Buffers. Phase Equilibrium. Automobile to Ni-Cd and be orrosion. Bonding Models d Metal Complexes; (b) Im s, (c) Absorption a	s of Thermodyn mochemistry; B hergy. (c) Transp ium: Proton Equi Redox & Electro eyond); Fuel Cells & Properties: (a pplications on elec- and Emission	amics; Entropy; ioenergetics. (b) port of Ions and librium (aqueous ochemistry: Basic s; Latimer, Frost, a) In Molecules, ctrical, magnetic, Spectroscopy.

Functional Materials - *Design & Application:* (a) Synthetic Polymers (carbon framework, silicon framework, fluorinated polymer), Bio & biodegradable polymers. (b) Surfactants. (c) Nanostructures, Soft materials and Thin Films. (b) Emerging applications in Energy harvesting, Memory Storage and Micro-fabrication. Industrial & Bio-inspired Chemistry: (a) Case studies on Industrial organics with emphasis to Drugs (b) Oxidation, Reduction, Catalytic hydrogenation and Electron transfer. Molecules in Daily Life: A short tour on molecules behind taste, smell, pain, colour and sex.

Text/Reference Books:

1. Brown L. and Holme, T. Chemistry for Engineering Students, Thomson Brooks.

2. Atkins P. and Paula J. D. Atkins' Physical Chemistry, Oxford.

3. Shriver, D. F. and Atkins, P. W. Atkins' Inorganic Chemistry, Oxford.

4. Morrison R. T. and Boyd R. N. Organic Chemistry, Prentice Hall.

5. Steed J. W. and Atwood J. L. *Supramolecular Chemistry*, John-Wiley.

6. Caruther W. Reagents in Organic Chemistry, Cambridge University Press.

7. Wiseman P. An Introduction to Industrial Organic Chemistry, Applied Science.

8. Hall N. The New Chemistry, Cambridge University Press.

9. Atkins P. Atkins' Molecules Cambridge University Press.

10. Cengel Y. A. and Boles M. A. *Thermodynamics-An Engineering Approach*, Tata McGraw- Hill

Subject Code: ME1L001	Subject Name:	Mechanics	L-T-P: 3-1-0	Credit: 4
-----------------------	---------------	-----------	-----------------	-----------

Pre-requisite(s): Nil

Force systems: Moment of a force about a point and about an axis; couple moment; reduction of a force system to a force and a couple. Equilibrium: Free body diagram; equations of equilibrium; problems in two and three dimensions; plane frames and trusses. Friction: Laws of Coulomb friction, problems involving large and small contact surfaces; square threaded screws; belt friction; rolling resistance. Kinematics and Kinetics of particles: Particle dynamics in rectangular coordinates cylindrical coordinates and in terms of path variables; central force motion. Properties of areas: Moments of inertia and product of inertia of areas, polar moment of inertia, principal axes and principal moments of inertia. Concept of stress and strain: Normal stress, shear stress, state of stress at a point, ultimate strength, allowable stress, factor of safety; normal strain, shear strain, Hooke's law, Poisson's ratio, generalized Hooke's law; analysis of axially loaded members. Torsion: Torsion of cylindrical bars, torsional stress, modulus of rigidity and deformation. Flexural loading: Shear and moment in beams; load, shear and moment relationship; shear and moment diagrams; flexure formula; shear stress in beams; differential equation of the elastic curve, deflection of beams. Transformation of stress and strain: Transformation of stress and strain, principal stresses, principal strains, Mohr's circle for stress and strain. Combined loading: Axial and torsional; axial and bending; axial, torsional and bending. Column: Buckling of slender columns, Euler bucking load for different end conditions.

Text/Reference Books:

1. Vector Mechanics for Engineers: *Statics and Dynamics* - Ferdinand P. Beer, E. Russell Johnston, Jr. (TMH)

2. Engineering Mechanics: Statics and Dynamics - I.H. Shames (Pearson)

3. Engineering Mechanics - S. Timoshenko, D. H. Young (TMH)

4. Mechanics of Materials - Ferdinand Beer , E. Russell Johnston, Jr., J. DeWolf (TMH)

5. Elements of Strength of Materials - S. Timoshenko, D. H. Young (East West Press)

6. Mechanics of Materials - James M. Gere, Barry J. Goodno (CL Engg)

7. Engineering Mechanics - Stephan Timoshenko, D. Young (TMH)

8. Strength of Materials (Part 1) – S P Timoshenko (CBS)

Subject Code:	Subject Name: English for	L-T-P:	Credit: 4
HS1L001	Communication	3-0-2	

Pre-requisite(s): Nil

English for Communication is an amalgamation of Literature, Language and Communication. The Literature component of the course comprises of Prose and Poetry.

Poetry:

A selection of poetry pieces spanning from 16th century to the Post-Modern Period in English, American and Indian Literature are chosen to introduce to the students to the different poets from different ages and countries and also to acquaint them with the various poetic forms like Sonnet, Ballad, Elegy, Didactic, Dramatic, Nature, Lyric, Romantic, etc. The list is an indicative one. 16th century- 17th century- Geoffrey Chaucer, William Shakespeare, Edmund Spenser, Ben Johnson, Thomas Wyatt. 17th century- 18th century- John Milton, John Donne, George Herbert, John Dryden, Oliver Goldsmith. 18th century- 19th century- Alexander Pope, Thomas Gray, Robert Burns, William Blake, William Wordsworth, Samuel Taylor Coleridge, Lord Byron, P.B. Shelley, John Keats, Robert Bridges, Robert Southey, Samuel Johnson. 19th century-20th century- Alfred Tennyson, Robert Browning, Walter de la Mare, Thomas Hardy, A.E. Housman, Rudyard Kipling, D.H. Lawrence, Wilfred Owen, D.G. Rossetti, Christina Rossetti, Emily Dickinson, Gerald Manley Hopkins, Charlotte Bronte, Lewis Caroll, Edward Fitzgerald, Walt Whitman. 20th century- Present- Ted Hughes, Louis MacNeice, W.B. Yeats, Stephen Spender, W.H. Auden, Nissim Ezekiel, Sarojini Naidu, Jayanta Mahapatra, Robert Frost, , Ezra Pound, E.E. Cummings, T.S. Eliot, Walt Whitman, A.K. Ramanujan, Kamala Das, Rabindranath Tagore, Jack Prelutsky, Chinua Achebe, Maya Angelou, Margaret Atwood, Leonard Cohen, Louise Erdrich, Leslie Marmon Silko. Prose:

A selection of fictional and non-fictional prose pieces spanning from 17th century to the Post-Modern Period. Fiction and non-fictional pieces from English, American, Russian and Indian Literature are chosen to introduce the students to different writings from different ages and countries. The list is an inclusive one consisting of short stories, essays, excerpts, extracts from novels, biographies and memoirs, history, travel and other forms. 17th century-18th century: Charles Dickens, William Makepeace Thackeray, George Eliot, Thomas Hardy, Lewis Carroll, Arthur Conan Doyle, John Bunyan, Rudyard Kipling, H.G. Wells, R.L, Stevenson, Jane Austen, Emily Bronte, Charles Lamb, F.M. Dostoyevsky, Nikolai Gogol, Daniel Dafoe, Jonathan Swift, Lewis Carroll; 19th century-20th century: Oscar Wilde, O Henry, H.H. Munro, Mark Twain, Somerset Maughaum, Nathaniel Hawthorne, G.B. Shaw, G.K. Chesterton, Agatha Christie, Gerald Durrell, Will Durant, E.M. Forster, Aldous Huxley, Henry David Thoreau, Anton Chekov, Maxim Gorky, Leo Tolstoy, George Orwell, Rabindranath Tagore, M.K. Gandhi, J. Nehru, Virginia Woolf, Guy De Maupassant, Washington Irving, Margaret Fuller, Charles Darwin, Arthur Conan Doyle, F. Scott Fitzgerald, Ernest Hemingway, Edgar Allan Poe. 20th century-Present: J.M. Coetzee, R.K. Narayan, R.K. Laxman, A.P.J. Abdul Kalam, Khushwant Singh, Anita Desai, Yann Martel, Ken Kesey, Stephen King,

Thomas King, Richard Wright, N Scott Momaday, Chetan Bhagat, J. Krishnamurthy, Virginia Woolf, Gerald Vizenor, Alice Walker, Chinua Achebe, Jeffrey Archer, Issac Asimov, Roald Dahl, J.R.R. Tolkien, D.H. Lawrence, James Joyce, Oran Pamuk, Salman Rushdie, Bertrand Russell, Ruskin Bond, A.G. Gardiner, John Steinbeck.

Communication:

Because communication is so important in business, businesses want and need people with good communication skills. Business communication is a blend of skills like writing and speaking well, displaying proper etiquettes and listening attentively. Communications through technology greatly enhances one's ability to communicate effectively and articulately. For example, E-mails often result in a sender's language skills being placed in front of different people simultaneously; while audio and video will reveal the calibre of one's verbal and diplomatic strengths. The communication aspect of the English for Communication Course includes:

- 1. The Basics of Business Communication
- 2. Importance of Listening
- 3. Barriers in the Communication Process
- 4. Business Letters (Letter of Inquiry, Complaint, Cover Letter)
- 5. Resume Writing
- 6. Memo and Memo Reports
- 7. Report Writing
- 8. Fax and E Mail

English Laboratory:

Objective: The laboratory component included in the course provides an ideal platform for students to prepare themselves into confident and self-assured individuals. The Lab course is designed to inculcate confidence and clarity in presentation and expression of thought, views and ideas through practice and exercises. It constitutes six basic components to improve listening, reading and writing skill of the students.

Lessons:

- 1. Pronunciation (Basic sounds of English like Long/Short Vowels; All consonants)
- 2. Stress Intonation (Rising and Falling)
- 3. Speaking- Oral Presentations, Group Discussions, Story Telling, Role Plays
- 4. Listening Importance and Practice
- 5. Reading- Practice

6. Writing (Paragraph writing, good writing and bad writing with samples, Indianism), Grammar (Basic- Articles, Prepositions, Verbs, Common Errors, etc)

Text/Reference Books:

1. John Seely, The Oxford Guide to Writing and Speaking, OUP

2. Krishna Mohan and Meenakshi Raman, Effective English Communication, TMH

3. R.W.Lesikar and John.D. Pettit, Business Communication: Theory and

Application, All India Traveller Bookseller

4. Francis Soundaraj, Speaking and Writing for Effective Business Communication, Macmillan.

5. Herta A. Murphy, et al., Effective Business Communication, Tata Mc-Graw Hill: New Delhi

6. Ronald B. Adler and George Rodman, Understanding Human Communication, Oxford University Press: New York

Subject Code: HS1L002	Subject Name: Learning English	L-T-P: 3-1-0	Credit: 4			
Pre-requisite(s): Nil						
The Learning English Course is designed to improve the English Listening, Speaking, Reading and Speaking skills of students. I. Prose						
A selection of fictional and r	non-fictional prose pieces spanning	from 17t	h century to			
the Post-Modern Period. Fic	ction and non-fictional pieces from	English, A	American,			
writings from different ages	and countries. The list is an inclusion	sive one co	onsisting of			
short stories, essays, excer	pts, extracts from novels, biograph	nies and m	nemoirs,			
history, travel and other for	ms. mr. Charles Diskons, William Maks	nonco Th	ackoray			
George Fliot, Thomas Hardy	Lewis Carroll, Arthur Conan Dov	ie. John	ackeray,			
Bunyan, Rudyard Kipling, H	I.G. Wells, R.L, Stevenson, Jane A	usten, Em	ily Bronte,			
Charles Lamb, F.M. Dostoye	evsky, Nikolai Gogol, Daniel Dafoe,	Jonathan	Swift, Lewis			
Carroll.	urv- Oscar Wildo, O Hoppy, H.H. M	upro Marl	Twain			
Somerset Maughaum, Nath	aniel Hawthorne, G.B. Shaw, G.K.	Chesterto	n, Agatha			
Christie, Gerald Durrell, Wil	l Durant, E.M. Forster, Aldous Hux	ley, Henry	David			
Thoreau, Anton Chekov, Ma	xim Gorky, Leo Tolstoy, George O	rwell, Rab	indranath			
Tagore, M.K. Gandhi, J. Ner	nru, Virginia Woolf, Guy De Maupas rlos Darwin, Arthur Conan Dovlo, I	ssant, Was	shington			
Ernest Hemingway, Edgar A	llan Poe.	SCOLL FI	tzgeralu,			
20th century- Present- J.N	1. Coetzee, R.K. Narayan, R.K. Lax	man, A.P.	J. Abdul			
Kalam, Khushwant Singh, A	nita Desai, Yann Martel, Ken Kese	y, Stepher	h King, Thoma			
King, Richard Wright, N Sco	tt Momaday, Chetan Bhagat, J. Kr	ishnamurt	hy, Virginia			
Roald Dabl 1 R R Tolkien	D H Lawrence James Jovce Oran	Pamuk 9	ac Asimov, Salman			
Rushdie, Bertrand Russell, F	Ruskin Bond, A.G. Gardiner, John S	Steinbeck.	annan			
II. Writing- Paragraph, Essa	ay, Précis, Dictation, Comprehensi	on, Letter	Writing			
III. English Tutorial- Practic	ce Listening and Speaking English					

IV. English Practice- Grammar Assignments and Workbook (Everyday English Level I/II)

Text/Reference Books:

1. John Seely, The Oxford Guide to Writing and Speaking, OUP

2. Krishna Mohan and Meenakshi Raman, Effective English Communication, TMH

3. R.W.Lesikar and John.D. Pettit, *Business Communication: Theory and Application*, All India Traveller Bookseller

4. Francis Soundaraj, *Speaking and Writing for Effective Business Communication*, Macmillan.

5. Herta A. Murphy, et al., *Effective Business Communication*, Tata Mc-Graw Hill: New Delhi

6. Ronald B. Adler and George Rodman, *Understanding Human Communication*, Oxford University Press: New York

Subject Code:	Subject Name: Electrical	L-T-P:	Credit: 4
EE1L001	Technology	3-1-0	
Pre-requisite(s): Nil			
Introduction: Sources of transmission and distribu	energy; General structure of electrical	power sy	estems, Power
Hydel, and Nuclear power	tion via overhead lines and undergrou	nd cables	, Steam,
and mesh current method	r generation; DC Networks: Kirchhoff's	s laws, no	de voltage
principle, Thevenin's, Nor	ds, Delta-star and star-delta conversio	n, Superp	position
Single phase AC Circuits:	ton's theorems and Maximum power to	ransfer th	neorem;
of sinusoids, solution of R	Single phase EMF generation, averag	e and effe	ective values
impedances, phasor diago	R,L,C series circuits, the j operator, con	mplex rep	presentation of
parallel and series – para	ram, power factor, power in complex r	notation, s	solution of
generation, delta and Y –	llel circuits; Three phase AC Circuits:	Three pha	ase EMF
phase circuits, balanced s	connections, line and phase quantities	s, solution	n of three
measurement of power in	supply voltage and balanced load, pha	sor diagra	am,
Magnetic Circuits: Amper	three phase circuits, Three phase fou	ir wire circ	cuits;
hysteresis and eddy currer	e's circuital law, B – H curve, solution	of magne	etic circuits,
ratings, phasor diagram of	ent losses; Transformers: Construction	n, EMF equ	uation,
efficiency calculations, op	on no load and full load, equivalent cir-	cuit, regu	lation and
Construction, EMF and To	pen and short circuit tests, auto-transfor	ormers; D	DC Machines:
motors, speed control of	que equations, Characteristics of DC	generator	rs and
Instruments: DC PMMC in	DC motors and DC motor starters; Ele-	ectrical Me	easuring
ammeters and voltmeters	nstruments, shunt and multipliers, mu	ltimeters,	Moving iron
instrument ranges.	s, dynamometer, wattmeter, AC watth	nour meter	r, extension of

Text/Reference Books:

1. E. Hughes, "Electrical Technology," Pearson Education, 2010.

2. V. Del Toro, "Electrical Engg Fundamentals," PHI Learning, 2009.

3. I. J. Nagrath and D. P. Kothari, '*Basic Electrical Engineering'* TATA Mc Graw Hill Education, 2009.

4. D. A. Bell, "Electric Circuits," 7th Ed., Oxford Higher Education, 2009.

Subject Code:	Name: Introduction to	L-T-P:	Credit: 4
CS1L001	Programming and Data Structure	3-1-0	
Pre-requisite(s): N	2		

Digital computer fundamentals, concepts of algorithms and introduction to programming – examples; Constants and variables – data types, operators and expressions - type conversions, types of expressions; Assignment statements, inputoutput statements - concepts of data formats; Control statements: branching – if-else statements; iteration – while, do-while, for statements. nested control structures, switch, break and continue statements; Functions and recursion – examples; concepts of parameter passing by values and by reference; Arrays – single and multidimensional, examples – searching and sorting; Introduction to pointers, character strings and arrays, pointers and arrays; Structures, linked lists, dynamic allocation, stacks and queues, binary trees and tree traversals; Data files – creating, opening, closing and operating data files; (The programming language C to be used as the basis language).

Text Books:

- B. Gottfried, "Schaum's Programming with C," Tata McGraw-Hill.
 E. Balaguruswamy, "Programming in ANSI C," Tata McGraw-Hill.

- Y. Kanetkar, "Let us C," BPB Publications.
 S. Lipschutz, "Data Structures, Schaum's Outlines Series," Tata McGraw-Hill.

Reference Books:

1. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language," Prentice Hall of India.

2. Ellis Horowitz, Satraj Sahni and Susan Anderson-Freed, "Fundamentals of Data *Structures in C*," W. H. Freeman and Company.

Subject Code: ME1P001	Name: Introduction to Manufacturing Processes	L-T-P: 0-0-3	Credit: 2
Pre-requisite(s): Nil			
Machining: Introducing to Making a steel External screw Making a cast i Making a regula Slot fitting by r Study of machi Study of Electro	various machine tools and demonstration pin as per drawing by machining in cent thread on lathe ron Vee block by shaping ar polygon prism (MS)/ hexagon by milli nilling machine ning in machining in machining centre (o discharge machining (EDM)	n on machin re lathe ng machine CNC)	ing
 Foundry Practice: Orientation, demonstration and practice on metal casting Practicing sand moulding using split and uneven parting line pattern Practice on CO2 moulding and machine moulding Mechanised sand preparation and melting practice 			
Welding Practice: Practice on elect Practice on oxy Introduction ar	ctric arc welding -acetylene gas welding nd demonstration on submerged arc weld	ding	
Metal Forming: Demonstration of deep	o drawing and other forming process		
Text/Reference Boo 1. Chapman W.A.J., <i>W</i> 2. Chapman W.A.J., <i>W</i> 3. Hajra Choudhury S. 4. Hajra Choudhury S.	ks: /orkshop Technology - Part I, CBS Publis /orkshop Technology - Part II, CBS Publi .K., Elements of workshop Technology Ve .K., Elements of workshop Technology Ve	hers. shers. <i>ol. I</i> , Media I <i>ol. II</i> , Media	Promoters. Promoters.

Subject Code: CE1P001	Subject Name: Engineering Drawing and Graphics	L- 1-	T-P: 0-3	Credit: 3	
Pre-requisite(s): Nil					
Introduction to IS code of drawing; Conics and Engineering Curves – ellipse, parabola, hyperbola, cycloid, trochoid, involute; Projection of lines – traces, true length; Projection of planes and solids; sold objects – cube, prism, pyramid, cylinder, cone and sphere; Projection on Auxiliary planes; Isometric projection, isometric scale; Section of solids – true shape of section; Introduction to CAD tools – basics; Introduction of Development and Intersection of surfaces.					
Text/Reference Books: Bhatt N.D. <i>Elementary Eng.</i> Gill P.S. <i>Engineering Drawin</i> Lakshminarayan L.V. and	ineering Drawing, Charotar Publish ng & Engg. Graphics, S. K. Kataria Vaish R.S.Engineering Graphics, Ja	ing House. & Sons. iin Brother	s.		
Subject Code: PH1P001	Subject Name: Physics Laboratory	L-' 0-	T-P: 0-3	Credit: 2	
Pre-Requisite(s): Nil					
To verify Malus's Law of po To determine the wave len transmission diffraction gra of the grating. To study the intensity distr measure the width of the s To determine the waveleng To determine the wave len To find out the resonance spring constant. To study the interference p convex lens using Newton'	To determine the damping constant of the pendulum for different eddy damping current. To verify Malus's Law of polarization of light. To determine the wave length of the prominent lines of mercury source by a plane transmission diffraction grating and to calculate the resolving power and dispersive power of the grating. To study the intensity distribution of Fraunhofer diffraction pattern by a single slit and measure the width of the slit for a given wavelength of laser light. To determine the wavelength of the given source using the Michelson interferometer. To determine the wave length of the given source using Fresnel's biprism. To find out the resonance and beat time period of the coupled pendulum and find out the spring constant. To study the interference pattern and determine the radius of curvature of the plano convex lens using Newton's rings apparatus.				
Text/Reference Books: 1. Ghatak <i>A. Optics</i> , McGra 2. Pain H. J. <i>The Physics o</i>	aw-Hill. f Vibrations and Waves, Wiley.				
Subject Code: S CY1P001	Subject Name: Chemistry .aboratory	L-T-P: 0 0-3)- Cr	edit: 2	
Prerequisite(s): Nil					
Experiment-1: Determination of the surface tension and parachor of a homologous series. Experiment -2: Measurement of the coefficient of viscosity of ethanol & ethanol -water system. Experiment -3: Studies on acid-base conductometric titration.					

Experiment- 4: Studies on PH metric titration of strong base with strong acid.

Experiment -5: Estimation of sulphate ion in tap water by nepheloturbidimetric analysis.

Experiment - 6: Spectrophotometric determination of acid dissociation constant (pka) of methyl red (MR) an acid base indicator.

Experiment -7: Determination of solubility and solubility product of a sparingly soluble salt at room temperature by conductometric method.

Experiment- 8: Potentiometric titration of a given sodium carbonate solution with aquesous hydrochloric acid solution.

Experiment -9: kinetics of ester hydrolysis.

Experiment -10: Detection of functional groups in an organic compound for solid sample.

Experiment-11: Detection of functional groups in an organic compound for liquid sample.

Experiment -12: Thin layer chromatography (TLC).

Text/Reference Books:

1. Nad, A. K.; Mahapatra, B. and Ghoshal A. *An advanced course in practical chemistry*, New Central Book Agency (P) Ltd.

Elias A. J. A collection of general chemistry experiments, University Press.
 Maity S. and Ghosh N. *Physical Chemistry Practical*, New Central Book Agency (P) Ltd.

Subject Code:	Subject Name: Electrical	L-T-P:	Cradita: 2
EE1P001	Technology Laboratory	0-0-3	creaits: 2

Prerequisite(s): Electrical Technology

Experiments as per the topics in the syllabus for the course `Electrical Technology' (EE1L001) will be conducted in the laboratory class.

Text Books:

- 1. E. Hughes, "Electrical Technology," Pearson Education, 2010.
- 2. V. Del Toro, "Electrical Engg Fundamentals," PHI Learning, 2009.

Reference Books:

1. I. J. Nagrath and D. P. Kothari, '*Basic Electrical Engineering'* TATA McGraw Hill Education, 2009.

2. D. A. Bell, "*Electric Circuits,"* 7th Ed., Oxford Higher Education, 2009.

Subject Code: CS1P001	Subject Name: Introduction to Programming and Data Structures Laboratory	L-T-P: 0-0-3	Credit: 2
--------------------------	--	-----------------	-----------

Prerequisite(s): Introduction to Programing and Data Structures

Familiarization of a computer and the environment; Execution of sample programs related to Expression evaluation, Conditionals and branching, Iteration, Functions, Recursion, Tail-recursion, Arrays, String manipulation, Structures, Linked lists, Doubly-linked lists and Binary Trees. Execution of programs involving abstract data types like Stacks and Queues.

Semester-II

Subject Code: MA1L002	Subject Name: Mathematics-II	L-T-P: 3-1-0	Credit: 4				
Pre-requisite(s): Nil							
Pre-requisite(s): Nil <i>Linear Algebra:</i> Vector spaces, subspaces, span, Linear dependence, independence of vectors, basis, dimension, linear transformations, range, kernel, rank, nullity of linear transformation, space of all linear transformations, Operator equations, matrix associated with a linear map, linear map associated with a matrix, elementary row operations, solution of algebraic equations, consistency conditions. Matrix inversion by row operations, Eigenvalues and eigenvectors, Hermitian and skew Hermitian matrices, orthogonal and unitary matrices, application to reduction of quadrics. <i>Complex Analysis:</i> Limit, continuity, differentiability and analyticity of functions Cauchy-Riemann equations (cartesian and polar), Harmonic functions, Elementary complex functions, Line integrals, upper bounds for moduli of contour integrals, Cauchy's integral theorem, Cauchy's integral formula, derivatives of analytic functions, Power series, Taylor's series, Laurent's series, Zeros and singularities, Residue theorem, evaluation of improper integrals by residue theorem.							

Text books:

- 1. Strang G. Linear Algebra and its applications, Cengage Learning
- 2. Churchill R.V. and Brown J.W. Complex Variables and Applications, Mc-Graw Hill
- 3. Kreyszig E. Advanced Engineering Mathematics, John Wiley & Sons

Reference Books:

J1. ain R. K. and Iyengar S. R. K. *Advanced Engineering Mathematics*, Narosa 2. Krishnamurthy V., Mainra V. P. and Arora J.L. *An Introduction to Linear Algebra*, Affiliated East-West Press Pvt Ltd New Delhi

3. Axler S. Linear Algebra Done Right, UTM, Springer

4. Poole D. Linear Algebra: A Modern Introduction, Brooks/Cole

All other courses are same as Semester-I Courses.

B. Tech in Electrical Engineering (3rd Semester – 8th Semester Courses)

SEMESTER – III						
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.	
Breadth – 1		3-0-0	3	3		
Introduction to Electronics	EC2L001	3-1-0	4	4	19	
Introduction to Material Science and	ID2L001	2-0-0	2	2		
Engineering						
Introduction to Bio Science and Technology	ID2L002	2-0-0	2	2		
Probability Statistics and Stochastic	MA2L003	3-1-0	4	4		
Processes						
Signals and Systems	EC2L002	3-1-0	4	4	19	
Introduction to Electronics Laboratory	EC2P001	0-0-3	2	3	20	
Signals and Systems Laboratory	EC2P002	0-0-3	2	3	20	
Seminar	EE2S001	0-0-3	2	0		
		Total	25	25		

SEMESTER – IV						
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.	
Lateral -1		3-0-0/3-1-0	3/4	3/4		
Breadth – 2		3-0-0/3-1-0	3/4	3/4		
Environmental Science Technology and Management	ID2L003	2-0-0	2	2		
Network Theory	EE2L001	3-1-0	4	4	21	
Electric Machines	EE2L003	3-1-0	4	4	21	
Digital Electronics and Microprocessor	EC2L006	3-1-0	4	4	22	
Electric Machines Laboratory	EE2P001	0-0-3	2	3	22	
Digital Electronics and Microprocessor Laboratory	EC2P006	0-0-3	2	3	23	
		Total	24/25	26/27		

SEMESTER – V						
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.	
Lateral - 2		3-0-0/3-1-0	3/4	3/4		
Breadth - 3		3-0-0	3	3		
Power Electronics	EE3L004	3-1-0	4	4	24	
Electrical Power Transmission and Distribution	EE3L007	3-1-0	4	4	24-25	
Measurement and Instrumentation	EE3L010	3-0-0	3	3	25-26	
Electromagnetic Field Theory	EE3L011	3-0-0	3	3	26	
Power Electronics Laboratory	EE3P004	0-0-3	2	3	26	
Measurement and Instrumentation Laboratory	EE3P005	0-0-3	2	3	27	
		Total	24/25	26/27		

SEMESTER – VI						
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.	
Lateral -3		3-0-0/3-1-0	3/4	3/4		
Breadth – 4		3-0-0/3-1-0	3/4	3/4		
Control Systems	EE3L003	3-1-0	4	4	28	
Digital Signal Processing	EC3L003	3-1-0	4	4	28-29	
Power System Operation and Control	EE3L012	3-1-0	4	4	29	
Control Systems Laboratory	EE3P003	0-0-3	2	3	30	
Digital Signal Processing Laboratory	EC3P002	0-0-3	2	3	30	
Power Systems Laboratory	EE3P006	0-0-3	2	3	30	
		Total	24/26	27/29		

SEMESTER – VII						
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.	
Digital Control Systems	EE4L005	3-0-0	3	3	31	
Renewable Energy Systems	EE4L006	3-0-0	3	3	31-32	
Elective – 1		3-0-0	3	3		
Elective – 2		3-0-0	3	3		
Industrial Training Defence	EE4T001		2	2		
Project- Part 1	EE4D001	0-0-6	4	0		
		Total	18	14		
	SEMEST	$\mathbf{E}\mathbf{R} - \mathbf{V}$	III			
Elective – 3		3-0-0	3	3		
Elective – 4		3-0-0	3	3		
Elective – 5		3-0-0	3	3		
Elective – 6		3-0-0	3	3		
Renewable Energy Systems Laboratory	EE4P002	0-0-3	2	3	33	
Project- Part 2	EE4D002	0-0-9	6	0		
		Total	20	15		

List of Elective Courses

Subject Name	Subject Code	L-T-P	Credit	Contact Hour	Syllabus Page No.
Elective	- 1, 2				
Semiconductor Devices	EC4L001	3-0-0	3	3	34
Statistical Signal Processing	EC6L005	3-0-0	3	3	34-35
High Voltage Engineering	EE6L009	3-0-0	3	3	35
Energy Storage Systems	EE6L011	3-0-0	3	3	35
Opto-Electronics	EC4L002	3-0-0	3	3	36
Image and Video Processing	EC6L002	3-1-0	4	4	36
Electric Power Quality	EE6L002	3-0-0	3	3	36-37
Advanced Power Electronics	EE6L010	3-0-0	3	3	37
Industrial Instrumentation	EE6L007	3-0-0	3	3	37-38
Elective –	3, 4, 5, 6				
Biomedical Signal Processing	EC6L015	3-0-0	3	3	39
Fiber Optic Sensors	EC6L019	3-0-0	3	3	39
Embedded Systems	EC4L008	3-0-0	3	3	39-40
Pattern Recognition	EC6L027	3-0-0	3	3	40
Array Signal Processing	EC6L024	3-0-0	3	3	40-41
Power System Dynamics & Control	EE6L003	4-0-0	4	4	41
Power System Protection	EE6L004	4-0-0	4	4	41
Distribution System Engineering	EE6L017	3-0-0	3	3	42
Information Theory and Coding	EC6L003	3-0-0	3	3	42-43
Computational Electromagnetics	EC6L016	3-0-0	3	3	43
Adaptive Signal Processing	EC6L023	3-0-0	3	3	43
HVDC and Flexible AC Transmission Systems	EE6L005	3-0-0	3	3	44
Smart Grid Technology	EE6L014	3-0-0	3	3	44
Advanced Digital Signal Processing	EC6L004	3-0-0	3	3	45
Semiconductor Device Modelling	EC6L017	3-0-0	3	3	45
Advanced High Voltage Engg.	EE6L015	3-0-0	3	3	46
Advanced Electric Machines	EE4L004	3-0-0	3	3	46-47
Electric Drives	EE4L003	3-0-0	3	3	47
Power System Planning	EE6L018	3-0-0	3	3	47-48

The syllabus for Lateral and Breadth Courses are available in the syllabus document of the Schools offering the courses.

Syllabus for Core Courses for B.Tech Program (School of Electrical Sciences)

SEMESTER – III

Subject Code:	Name: Introduction to Electronics	L-T-P:	Credits: 4		
EC2L001		3-1-0			
Prereguisite: None					

Introduction to Electronic Devices: passive devices, Diode, bipolar junction transistor (BJT), metal oxide semiconductor field-effect transistor (MOSFET); Diode: basic structure and types, operating principle, current-voltage characteristic, large and small signal models; Diode Applications: rectifier circuits, zener voltage regulator Regards, clipper and clamper circuits; BJT and their Application: structure and modes of operation; NPN and PNP transistor in active mode, DC analysis, BJT as a switch and amplifier, small signal

equivalent circuits, single stage CE amplifier; MOSFET and Applications: switch and amplifier; Operational Amplifier and applications: Basics, summing amplifier, inverting and non-inverting configuration, voltage follower, differentiator and integrator; Feedback: Basic concepts of feedback, ideal feedback topologies; Oscillators: Basic principle of sinusoidal oscillation, phaseshift oscillator, wien-bridge oscillator; Digital Electronics: Boolean algebra and rules of simplification and combinational circuits.

Text Books:

1. S. Sedra, K. C. Smith, "Microelectronic Circuits," Oxford University Press, India, 2005.

2. A Malvino, D J Bates; "Electronic Principles," Tata McGraw Hill, India, 2007.

Reference Books:

1. R C Jaeger, T N Blalock, Microelectronic Circuit Design; Tata McGraw Hill, India, 2006.

Subject Code:	Name: Signals and Systems	L-T-P:	Credits: 4		
EC2L002		3-1-0			
Prerequisite: Mathematics – 1					

Objective and overview, signal and system types and classifications, LTI system: Causality, stability, step response, impulse response and convolution integral; Periodic signal analysis: Fourier series and properties; Aperiodic signal analysis : Fourier Transform - its properties and sinusoidal steady state analysis of systems; Discrete-time Fourier transform; Fourier transform for periodic signals; Time and frequency characterization of signals and systems: magnitude-phase representation of Fourier transforms; Unilateral and Bilateral Laplace Transforms and properties: Analysis and characterization of LTI systems using Laplace transform; System function and block diagram representation, Bode plot; Discrete signals: Sampling, digitization and reconstruction of analog signals; Fourier transform of discrete signals: DFT, z-transforms; Discrete systems, transfer functions and convolution; Analog filter design: Butterworth, Sallen Key, frequency transformation and scaling.**Text Books**:

1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signals and Systems," 2nd Ed., Pearson Prentice Hall, 2008.

2. S. Haykin and B. V. Veen, "Signals and Systems," 2nd Ed., Wiley India, 2007.

Reference Books:

1. H. P. Hsu, "Signals and Systems – Schaum's Outline Series," McGraw Hill, 1995.

Subject Code:	Name: Introduction to Electronics Laboratory	L-T-P:	Credits: 2		
EC2P001		0-0-3			
Prerequisite: Introduction to Electronics					
Familiarization	with electronic components; Familiarization and usage w	ith oscil	loscope, signal		
generator, mult	imeter; Frequency-response of R-C, C-R and R-L networks	s; Square	e-wave testing,		
V-I characteristics of PN junction diode and zener diode; Voltage Rectifiers; Common-Emitter					
amplifiers; Analog circuits using OP-AMP; logic gates.					
Subject Code:	Name: Signals and Systems Laboratory	L-T-P:	Credits: 2		

EC2P002 0-0-3	Subject Code:	Name: Signals and Systems Laboratory	L-T-P:	Credits: 2
	EC2P002		0-0-3	

Prerequisite: Signals and Systems

Basic MATLAB Programming: Manipulation of Vectors, Arrays and Matrices, Arithmetic Operations, Logical Operations, Loops, M-files & Functions, Mathematical Functions; Graphics and 3-D Visualization: Plotting of One-dimensional and Two-dimensional Signals, Plotting Symbolic Functions, 3-D Plotting; Mathematical Functions: Finding Roots of Polynomials, Computing Integration and Differentiation, Solving Differential and Difference Equations, Polynomial Curve Fitting, Recording, Storing, Reading, and M-File; Functions: Recording and Playing Signals, Storing and Reading Data in Different Formats, Creating M-Functions for Generating Different Elementary Signals, Creating M-Functions for Computing Different Statistical Parameters; Analysis of Systems: Finding Convolution, Finding Laplace and Inverse Laplace Transforms, Finding Z-and Inverse-Z Transforms, Zero-Pole Analysis; Analysis of Signals and Systems: Sampling of Signals, Fourier Series of Signals, Finding Magnitude and Phase Spectrum of Signals, Frequency Response of System; Convolution and Filtering, Creating GUI in MATLAB, MATLAB Simulink Modelling.

${\bf SEMESTER-IV}$

Subject Code:	Name: Network Theory	L-T-P:	Credits: 4		
EE2L001		3-1-0			
Prerequisite: S	gnals and Systems				
Nodal and Loop Analysis: review, modified nodal analysis; Network Theorems: Substitution					
theorem, Com	pensation theorem, Reciprocity theorem, Maximum po	ower trar	nsfer theorem,		
Millman's theo	rem, Tellegen's theorem; Transient analysis of RLC ci	rcuit and	l higher order		
circuits; Freque	ncy domain analysis of dynamic circuits using Fourier se	ries, Foui	rier transforms		
and Laplace tr	ansforms; Network functions: poles and zeros, driv	ing point	t and transfer		
functions, rest	rictions on poles and zeros for network functions, ti	me doma	ain behaviour,		
frequency resp	onse plots; Two-port networks and passive filters: z-par	ameters,	y-parameters,		
h-parameters,	and ABCD parameters; reciprocity and symmetry	in two-p	ort networks;		
Introduction t	o network topology: Graph theory: Tree, Co-tree,	fundam	ental cut-set,		
fundamental lo	op analysis of network; State variable analysis of networ	ks.			
Text Books:					
1. M.E.Vall	enburg, "Network Analysis," 3 rd Ed., Pearson Prentice Hall, 2006.				
Z. F. F. Kuo,	"Network Analysis and Synthesis," 2 nd Ed., Wiley India, 2007.				
1. W. H. Hya	• it, J. E. Kemmerly and S. M. Durbin, "Engineering Circuit Analysis," 6	th Edition,	Tata McGraw Hill,		
2007.					
2. R. A. DeC	arlo and P-M Lin, "Linear Circuit Analysis," 2 nd Ed., Oxford University	Press, 200	7.		
Subject Code:	Name: Electric Machines	L-T-P:	Credits: 4		
EE2L003		3-1-0			
Prerequisite: E	ectrical lechnology		1		
Production of r	otating magnetic field with proof, Magneto motive force	and flux	distribution on		
AC machines,	induced voltage and torque; Generator Construction,	winding	configuration,		
Efficiency Reg	lation Effect of Load Changes on a Synchronous Gener	anu ion	ration Parallel		
operation of A	C Generators Frequency-nower and Voltage-Reactive	Power (characteristics		
Parallel Operation: Equivalent Circuit Steady state operation of synchronous motor. Power and					
torque. Torque-Speed characteristic. Losses & Efficiency. Effect of load and field current					
changes, Different methods of starting; Induction Motor Construction, Basic Induction Motor					
Concepts, Torque and Power in Induction Motor, Torque-Speed Characteristics, Equivalent					
Circuit of an Induction Motor, Losses & Efficiency, Starting, Tests; Construction and operation					
of 3-phase tran	sformer, Different configurations including Y-Y, Y- Δ , Δ -	Y and ∆-	Δ, Phase Angle		
Displacement a	nd Phase Rotation (Different Vector Group), Zigzag Con	nection, 1	Three-Phase to		
Two-Phase con	version, Scott Connection, Autotransformer, Three wind	ing Trans	former.		

Text Books:

- 1. S. J. Chapman "Electric Machinery Fundamental," 4th Ed., MG Hill International Edition, 2006.
- 2. A. E. Fitzgerald, C. Kingsley, Jr, and S. D. Umans, "Electric Machinery," 6th Ed., Mc Graw Hill International Edition, 2002.
- 3. P.S Bimbhra, "Generalized Theory of Electrical Machines," Khana Publisher.

Subject Code: EC2L006	Name: Digital Electronics and Microprocessor	L-T-P: 3-1-0	Credits: 4		
Prereguisite: Introduction to Electronics					

Introduction to Boolean algebra and Switching Function, Boolean minimization; Combinational Logic Design using MSI circuits : Full Adder / Subtractor, BCD Adder, LAC Adder, Decoder, MUX/DEMUX three structure, Combinational logic design using ROM array, Applications of MSI designs; Integrated Circuits: Difference between combinational and sequential circuits, Flip Flops, Counters, Shift Registers and PLA; Analysis and Synthesis of Sequential Circuits: Basic models of sequential M/C, Analysis of Asynchronous and Synchronous circuits, Synthesis of completely and incompletely specified synchronous sequential M/Cs; Introduction to Microprocessor: Overview of architecture of Intel 8085 Microprocessor (Register, Stack, Interrupt) Instruction set and programming; Introduction to 16 Bit Microprocessor : Architecture of 8086 CPU architecture, Internal operations, Machine Language instructions, Addressing mode, Instruction Format, Instruction executions, Addressing mode, Instruction Format, Instruction execution timing, comparison of 8088 with 8086; Assembly language programming and Instructions: Assembler instruction format, Data Transfer, Arithmetic, Branch, Flag manipulation, Logical, Shift and Rotate. String Manipulation Stack Manipulation, all and return instructions, REP Prefix, segment override prefix, and simple assembler directives such as real, variable, DB, DW, DD, EQU, END, Assume, pointer (byte, word, double word, Near, Short, and Far).

Text Books:

- 1. S. Lee, "Digital Circuits and Logic Design" Prentice Hall India.
- 2. D. P. Leach, A. P. Malvino and G. Saha, "Digital Principles and Applications," Tata McGraw Hill.
- 3. M. Morris Mano, "Digital Logic and Computer Design," Prentice Hall.

Reference Books:

- 1. B. N Jain and R. P. Jain, Modern Digital Electronics, Tata McGraw Hill, 2006.
- 2. B. B. Bray, The Intel Microprocessors- 8086/8088, 80186, 80286, 80386, and 80486-Architecture, Programming and Interfacing, Prentice Hall, 2000.
- 3. D. V. Hall, Microprocessor and Interfacing programming & Hardware, TMH, 2001.
- 4. A. K. Ray and K. M. Bhurchandi, Advanced Microprocessors & Peripherals: Architecture, Programming & Interfacing, TMH, 2008.

Subject Code: EE2P001	Name: Electric Machines Laboratory	L-T-P: 0-0-3	Credits: 2		
Prerequisite: Electric Machines					

Performance testing (regulation, efficiency), characteristics (no-load and load characteristics) and parameters (equivalent circuit parameters, sequence components) of 3-phase alternator, performance test and characteristics of 3-phase synchronous motor, 3-phase induction motor, 1-phase induction motor, performance, characteristics and parameters of 1-phase and 3-phase transformers, type of connections of transformers, synchronization of alternators.

Subject Code:	Name:	Digital	Electronics	and	Microprocessor	L-T-P:	Credits: 2
EC2P006	Laborate	ory				0-0-3	
Prerequisite: D	igital Elec	tronics C	ircuit				
Truth tables of Comparators; E Flops: S-R, J-K a counter, Famil Assembly and keypad, LED device access, st	f Logic g incoders; ind D; Asy iarization dirization display epper mot	gates; Ha Schmitt T Inchrono with 8/ ne lang Ine lang Sor moven	If Adder and Frigger; Multiv us and Synchu 16 bit micro guage progr e of tim nent control, D	d Full vibrato ronous proces ammir aers C moto	Adder; Multiples ors: Astable, Monc Counters: Up-Do sors/microcontro ng, interfacing I and USART or speed control.	ker and E estable and wn, Rippl ller kits a pasic I/O periphera	De-multiplexer; d Bi-stable; Flip e counter, Ring and interfaces; devices like ls, multi-port

SEMESTER – V

Subject Code: EE3L004	Name: Power Electronics	L-T-P: 3-1-0	Credits: 4		
Prerequisite: Introduction to Electronics					

Characteristics of Power Semiconductor Devices: Power diode, power transistors (BJT, MOSFET,IGBT) and Thyristors (SCR, GTO, TRIAC), Gate drive circuit, Desired characteristics of controllable switches, Snubber circuits, Cooling and heat sinks; Rectifiers: Analysis and design of diode rectifier circuits and controlled rectifier circuits, Phase control, power factor, DC load voltage, Polyphase rectifiers, Current and voltage waveforms analysis, Applications for DC motor drives; AC-AC Phase control: Static switch, integral cycle control, Application of AC-AC Phase Control, Single-phase and polyphase control circuits, Applications for AC motor drives; DC-DC Converters: Chopper circuits using GTOs , buck, boost and buck-boost chopper, Discontinuous current analysis, Non-ideal effects and dynamic performance, Applications for DC motor drives; Inverters: Split source, half-bridge inverters, full bridge inverters, Output control, polyphase inverters, power factor, Current and voltage waveforms analysis, Applications for AC motor drives; Univerters, Pulse Width Modulation (PWM): Types of PWM, Microprocessor control, Harmonics and reactive power; Power Supply Applications: Switching power supplies, Electrical isolation, Protection circuits, Power supply specifications, Power line disturbances, Power conditioners, Uninterruptible power supplies.

Text Books:

- 1. Muhammad H. Rashid, "Power Electronics: Circuits, Device and Applications", 2nd Ed. 1993, Prentice-Hall, Inc.
- Ned Mohan, T M Undeland, W P Robbins, "Power Electronics: Converters, Application and Design", John Wiley, 3rd Edition, 2003
- 3. Thedore Wildi , "Electrical Machines, Drives and Power System", Prentice Hall International, Inc, 1997

Subject Code: EE3L007	Name: Electrical Power Transmission and Distribution	L-T-P: 3-1-0	Credits: 4		
Prerequisite: Electrical Technology, Network Theory					

Power System Network: Basic structure of power system, Transmission voltages, Bundled conductors, Choice of economics voltages, Transmission of Network in India; Line Parameters: Line resistance, Inductance, Flux Linkages within the conductor producing the flux, Flux linkage outside the conductor producing the flux, Inductance of bundled conductor lines, capacitance of two wire line, Capacitance of three phase line with equilateral spacing, Capacitance of three phase line with Unsymmetrical spacing, Capacitance of bundled conductor of lines, Double circuit three phase lines; Performance of Transmission Lines: Representation of lines, Per unit method, Short transmission line, Medium length transmission line, Long transmission line, Evaluation of ABCD parameters, Equivalent and T circuits, Application of Matrix methods, Line voltage regulation and compensation, Regulating transformer; Overhead Line Insulators: Insulator materials, Types of insulators, voltage distribution over insulator string, Improvement

of string efficiency, Insulator failure, testing of insulators; Mechanical Design of Overhead Lines: General consideration, Line supports, Span conductor configuration, spacing and clearances, sag and tension calculations, Conductor vibration; Corona: The phenomenon of corona, Corona loss, Factors and conditions affecting coronal loss, Coronal in bundled conductor lines; Interference between Power and Communication Lines: Electromagnetic Induction, Electro Static induction, Reduction of interference; Underground Cables: Classification of cables, Pressurized cables, Effective conductor register, conductor inductive reactance, parameters of single core cables, Capacitance of three core belted cable; Power System Transients : Circuit closing transient, Sudden symmetrical short circuit of alternator, Recovery transient due to removal of short circuit, Travelling waves on transmission lines, Wave equations, Arcing grounds, Line design based on direct strokes, Surge arrestors Insulation coordination; Extra High Voltage Transmission: Need for EHV transmission, Use of bundled conductors, Radio noise from EHV lines, Shunt compensation static-var systems, Series compensation, EHV systems in India; Distribution: Comparison of various distribution systems, voltage drop in distribution, Kelvin's Law, General design consideration, Load estimation; Design of Transmission Lines: Choice of voltage, Selection of conductor size, Choice of span, number of circuit, conductor, configuration; Power System Earthing.

Text Books:

- 1. C. L. Wadhwa, Electrical Power Systems, New Age.
- 2. L. M. Faulkenberry and W. Coffer, Electrical Power Distribution and Transmission, PHI, 1996.
- 3. W. D. Stevenson, Elements of Power System analysis, McGraw Hill, 1982.

Subject Code: EE3L010	Name: Measurement and Instrumentation	L-T-P: 3-0-0	Credits: 3		
Prereguisite: Introduction to Electronics					

Measurement of Electrical Quantities Standards of Measurement & Errors, Voltmeter, Ammeter, Multimeter Wattmeter and Energy meter; Measurement of Electrical Elements : Measurement of low, medium and high resistances, insulation resistance measurement AC bridges for inductance and capacitance measurement; Instrument Transformers Current and Potential transformers, ratio and phase angle errors; Electronic Measurements: Electronic voltmeter, multimeter, wattmeter & energy meter. Time, Frequency and phase angle measurements using CRO; Spectrum & Wave analyzer.; Digital counter, frequency meter, voltmeter, multimeter and storage oscilloscope; Instrumentation: Transducers, classification & selection of transducers, strain gauges, inductive & capacitive transducers, piezoelectric and Hall-effect transducers, thermisters, thermocouples, photo-diodes & photo-transistors, encoder type digital transducers, Signal conditioning and telemetry, basic concepts of smart sensors and applications. Data Acquisition Systems.

Text Books:

- 1. <u>A. K. Sawhney</u>, "Electronics Measurements & Instrumentation," Dhanpat Rai & Co., 2012.
- 2. <u>A. D. Helfrick and W. D. Cooper</u>, "Modern Electronic Instrumentation and Measurement Techniques," PHI Learning, 2011.
- 3. <u>A. S. Morris</u>, R. Langari and Butterworth-Heinemannm,, "Measurement and Instrumentation: Theory and Application," 1st Ed., Butterworth-Heinemann Ltd, USA, 2011.

- 4. <u>H. M. Berlin</u> and F. C. Getz, "Principle of Electronics Instrumentation and Measurement," Prentice Hall College Div., 1988.
- 5. E.W. Golding and F.C. Widdis, "Electrical Measurements and Measuring Instruments," Reem Publications, 2011.

Subject Code: EE3L011	Name: Electromagnetic Field Theory	L-T-P: 3-0-0	Credits: 3		
Prerequisite: Mathematics – 1, Mathematics – 2					

Review of Electrostatic & Electromagnetics, Maxwell's equations, Boundary conditions in Electromagnetic Field, Energy Theorems and Pointing Vector, Electromagnetic Wave Equation in Dielectrics and Conductors, Solution of Wave equation in Cartesian Coordinates in homogeneous Dissipative and Non dissipative Regions, Waves at interface between conductors and Dielectrics; Transmission Lines: Introduction, Line Transmission Theory, Variation of Voltage and Current at distance x from the sending end, Primary Line Constant, Phase Velocity and Line wavelength, Characteristics impedance, The Propagation Coefficient, Computation of Primary constants from values of short circuit and open circuit impedances, Phase and Group velocities, Standing Waves, Lossless Lines at Radio Frequencies, Voltage Standing Wave Ratio, Reflection Coefficient, Transmission Lines as Circuit Elements, Smith Chart, Solution of problems using Smith Chart, Stub Matching; Wave Guides: Introduction, Physical Mechanism of Wave Guide Propagation, Phase and Group Velocities, Rectangular Wave Guides, Cut off in a Rectangular Wave Guide, Wave Guide dimension, Wave Guide Impedance; Antennas: Introduction, Antenna Equivalent Circuits, Coordinate System, Radiation Fields, Polarization, The Isotropic Radiator, Power Gain of an Antenna, Effective Area of an Antenna, The Hertzian Dipole, Half Wave Dipole, Vertical Antennas, Folded Elements, Non-Resonant Antennas, Driven Arrays, Parasitic Arrays.

Text Books:

- 1. D. J. Griffiths, 'Introduction to Electrodynamics', Addison Wesley, 1999.
- 2. D. K. Cheng, 'Field and Wave Electromagnetics', Addison Wesley, 1999.
- 3. W. H. Hayt, 'Engineering Electromagnetic', Fifth Edition. TMH, 1999.
- 4. N. N. Rao, 'Elements of Engineering Electromagnetics', Pearson Education, Inc, 2004.

Subject Code: EE3P004	Name: Power Electronics Laboratory	L-T-P:	Credits: 2		
		0-0-3			

Prerequisite: Power Electronics

Study the operation of controlled single phase bridge converter with different types of loads; Study the operation of single phase AC voltage regulator with different types of loads; Study the operation of a three-phase bridge rectifier; Study the working of a three phase sinusoidal PWM Inverter; Study the load voltage waveforms of first quadrant chopper and verify calculated output voltage with measured value with R Load; Verification of the output waveforms of single phase cyclo converter with R Load; Controlling of the speed of induction motor by Variable Voltage and Variable Frequency (VVVF) method; Controlling of the speed of a DC Shunt Motor by using single Quadrant Chopper; Controlling of the speed of a separately excited DC Motor by three phase controlled convertor; Controlling of the Speed of separately excited DC Motor by single phase fully controlled convertor.

Subject Code: EE3P005	Name: Measur	ement ar	nd Instrum	nentation	L-T-P:	Credits: 2
	Laborato	ory			0-0-3	
Prerequisite: Measurem	ent and Instrum	entation				
Measurement of disp	lacement by	linearly	variable	differential	transfor	mer (LVDT);
Measurement of induct	ance by linearly	y variable	e inductiv	e transform	er (LVIT)	and Maxwell
bridge; Measurement of	f resistance by l	linearly v	ariable re	sistor transd	lucer (LVR	T) and Kelvin
bridge; Measurement of	f strain by strain	n gauge, N	Measurem	ent of tension	on and co	mpression by
load cell module; Mease	urement of defle	ection to	rque by to	orque transc	lucer; Me	asurement of
angular position by ang	ular potentiome	eter; Mea	surement	of capacitar	nce by Sch	nering bridge;
Characteristics of vibrati	ions of a mecha	nical syst	em; Study	/ of Piezo-el	ectric and	opto-electric
transducers; Study of flo	w measurement	t and leve	el measure	ement with D	OP transm	itter; Study of
thermistor and RTD cha	racteristics; Mea	asuremer	nts with p	ressure tran	sducers a	nd Hall effect
transducers.						

SEMESTER – VI

Subject Code:	Name: Control Systems	L-T-P:	Credits: 4		
EE3L003		3-1-0			
Prerequisite: S	ignals and Systems				
Introduction to	Control Systems: Definition, Examples of control systems, C)pen loop	and closed-		
loop control s	ystems, Review of Laplace and inverse Laplace transform	s; Syster	n Modeling:		
Signal flow gra	ph, Block diagram, Transfer function, Poles and zeros, Blo	ck diagra	m reduction		
using signal flo	ow graph and block diagram reduction techniques, Mech	anical, e	lectrical and		
electromechan	ical systems, First and second order models; Transient Respo	onse and	Steady State		
Error Analysis:	Definitions of transient response parameters, analysis of se	cond ord	er system as		
prototype, Rou	th-Hurwitz stability criterion, Classification of systems ba	ased on	steady state		
characteristics,	Steady state error coefficients; Root Locus Method: Def	inition o	f root locus,		
Properties of ro	oot locus, Sketching of root locus, Effect of open loop poles	and zero	s, Root locus		
design concept	s; Frequency Response Analysis: Bode diagram, Polar plot,	Nichols	olot, Nyquist		
stability criterio	on: nonmathematical description of Nyquist criterion, inter	pretation	n of stability,		
Relative stabilit	zy – Gain and Phase margin, Closed loop frequency response	e – M and	l N contours,		
Nichols chart;	Compensation Techniques: Compensation techniques: la	g, lead a	and lag-lead		
compensation,	PD, PI and PID controllers, Cascade compensation based o	n root lo	cus method,		
Introduction to feedback compensation; State Space Analysis: Concepts of state, state variables,					
and state model, State models for linear continuous-time systems, Diagonalization, Solution of					
state equations, Concepts of Controllability and Observability. Nonlinear Systems: Common					
physical nonlinearities, Phase plane method, Singular points, Stability of nonlinear systems,					
Phase trajecto	Phase trajectories, Describing function method and stability analysis, Lyapunov's stability				
criterion.					

Text Books:

- 1. R. Stefani, B. Shahrian, C. Savant & G. Hostetter, "Design of Feedback Control Systems", Oxford University Press, 2002.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall, 1997.

Reference Books:

- 1. B. C. Kuo & F. Golnaraghi, "Automatic Control Systems", John Wiley, 2003.
- 2. M. Gopal, "Control Systems: Principles and Designs", 2nd Edition, McGraw Hill, 2002.
- 3. R. C. Dorf & R. H. Bishop, "Modern Control Systems", Prentice Hall, 2000.

Subject Code:	Name: Digital Signal Processing	L-T-P:	Credits: 4
EC3L003		3-1-0	
Prerequisite: S	ignals & Systems		

Introduction to DSP, Signals and Systems Characterization, FIR and IIR : Recursive and Non Recursive, Z-Transform, Discrete Time Signals and Systems in Frequency Domain, Sampling, Quantization, Discrete Fourier Transform, Fast Fourier Transform, Short-time Fourier Transform, Digital Filter Structure, Analog Filter Design, Digital Filter Design.

Text Books:

 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms and Applications, 4th Ed., Pearson, 2012.

2. A. V. Oppenheim and R. W. Shafer, "Discrete-Time Signal Processing," Prentice Hall, 2009. Reference Books:

- 1. R. G. Lyons, "Understanding Digital Signal Processing," 3rd Ed., Prentice Hall, 2010.
- 2. V. K. Ingle and J. G. Proakis, "Digital Signal Processing using MATLAB," Thomson Learning, 2000.

Subject Code: EE3L012	Name: Power System Operation and Control	L-T-P: 3-1-0	Credits: 4
Prerequisite: E	lectrical Power Transmission and Distribution		

Fundamentals of Power System : Concepts of real and reactive powers, complex power, per-unit representation of power system, Transmission capacity, load characteristics, real power balance and its effect on system frequency, load frequency mechanism, reactive power, balance and its effect, on-load tap changing transformer and regulating transformer; Power Circle diagram: Receiving and sending end power circle diagram, universal power circle diagram, use of power circle diagram; Load flow analysis: Static load flow equation for a low-bus system, characteristics of a load flow equation, generalization to n-bus system, Gauss-Seidel and Newton-Raphson method of solution of load flow equations for 2 bus and 3 bus system; Load frequency control : Automatic voltage, regulator, exciter modelling, generator modelling and static performances of AVR loop, automatic load frequency, control of single area systems, speed governing system, hydraulic valve actuator, turbine generator response, static performance of speed governor, closing the ALFC loop, Concept of control area static response of primary ALFC loop, dynamic response of ALFC loop, ALFC for multicontrol area system, the two area system, modelling of the tie-line block diagram representation of two are system, static response of two area system, dynamic response of two area system, dynamic response of two area system tie-line bias control, tie-line bias control of two area system, static response, steady state instabilities; Economic Operation of power system : Distribution of load between units within a plant, transmission loss as function of plant generation, calculation of loss-coefficient, distribution of loads between plants with special reference to steam and hydel plants, automatic load dispatching; Power system stability: Steady state stability, transient stability, swing equation, equal area criteria for stability methods of improvement of transient stability.

Text Books:

- John J. Grainger & W. D. Stevenson, Jr, "Power System Analysis", Tata Mcgraw-Hill, 2003 Edition, 15th Reprint, 2010.
- 2. Stephen J Chapman, "Electric Machinery and Power System Fundamentals", Mc Graw Hill, International Edition, 2002.
- 3. C.L Wadhwa, "Electrical Power System", New age International (p) Limited Publisher, Reprint, 2008.
- 4. I. J. Nagrath and D. P. Kothari, Modern Power System Analysis, TMH, 2003.

Subject Code:	Name: Control Systems Laboratory	L-T-P:	Credits: 2	
EE3P003		0-0-3		
Prerequisite: C	ontrol Systems			
Transfer function	on evaluation of a DC motor; Study of an AC servomotor; St	tudy of d	igital control	
systems; DC se	ervo motor position control; Closed loop speed control of	f DC mot	or; Study of	
temperature co	ontrol systems; Feedback control of magnetic levitation sys	tem; PID	stabilization	
of an inverted	cart-pendulum system; Study of coupled tank system; PID s	stabilizat	ion of a twin	
rotor MIMO sy	stem; PID control of two link flexible manipulator.			
Subject Code:	Name: Digital Signal Processing Laboratory	L-T-P:	Credits: 2	
EC3P002		0-0-3		
Prerequisite: D	igital Signal Processing			
Fourier transfo	rm; Z-transform; Discrete Fourier transform (DFT); Fast Fou	urier trar	nsform (FFT);	
Infinite impulse	e response (IIR), Finite impulse response (FIR) filter designs	and pow	ver spectrum	
estimation.		r		
Subject Code:	Name: Power Systems Laboratory	L-T-P:	Credits: 2	
EE3P006		0-0-3		
Prerequisite:	Electrical Power Transmission and Distribution Renewa	ble Ene	rgy Systems	
Laboratory				
Performance of	Transmission line (regulation and efficiency), parameter calculat	tion (ABC	D parameter),	
characteristics with and without compensation (voltage profile, Ferranti effect), fault transient studies				
(transient, sub-transient conditions, symmetrical and un-symmetrical faults), protection relay				
characteristics (over current, distance, differential relays), insulator testing (string efficiency), dielectric				
strength of insul	ation, underground cable parameter calculation, earth insulatior	n resistan	ce test.	

SEMESTER – VII

Subject Code: EE4L005	Name: Digital Control System	L-T-P: 3-0-0	Credits: 3	
Prerequisite: Control Systems				

Introduction: Basic structure of digital control systems, Sampled-data control systems, DAC, ADC, Sample-and-hold operation, Sampling and reconstruction: ZOH and frequency domain considerations, Shanon's sampling theorem, Frequency spectrum; Transform Analysis of Sampled-Data Systems: Linear difference equation, Pulse response, Z-transform: review of properties and theorems, Inverse Z-transform, Relationship between z-plane and s-plane, Transform pairs; Discrete-Time System Modeling: Pulse transfer function, z-transfer function, discrete-time system with cascaded elements separated and not-separated by a sampler, Pulse transfer function of ZOH, Closed-loop systems, Characteristic equation, Sampled signal flow graph, Mason's gain formula; Stability Analysis: Introduction, Theorems, Stability tests: Bilinear transformation method and Jury's test, Performance specifications in time domain, Prototype second order system and response analysis, Steady state error analysis, Root loci; Frequency Domain Analysis: Introduction, Polar Plot, Nyquist stability criterion, Bode plot, Gain and phase margin, Closed-loop frequency response, z-domain equivalents of s-domain transfer functions; State Space Analysis: State equations and state transition equations with S/H devices, Relationship between state equations and transfer functions, Diagonalization, Computation of state transition matrix, State diagram, Decomposition of transfer functions, Realization of digital filters, Controllability and observability; Pole Placement Design and State Observers: Introduction, State feedback, Pole assignment by state feedback, Ackerman's formula, Deadbeat control, State observers, Deadbeat observer, The Separation Principle, Reduce order observer; Design of Digital Compensators: Frequency response based designs: Lead compensator, Lag compensator, Lead-lag compensator, Design using root locus plots: Lead compensator, Lag compensator, Lead-lag compensator, Digital PID controller design.

Text Books:

- 1. B. C. Kuo, "Digital Control Systems", 2nd Edition, Oxford University Press, 2012.
- 2. K. Ogata, "Discrete-Time Control Systems", 2nd Edition, Prentice Hall, 2009.
- 3. Charles L. Phillips , Troy Nagle , James Brickley, "Digital Control System Analysis and Design", Prentice Hall, 2014.
- 4. M. Gopal, "Digital Control Engineering", New Age International Publishers, 1996.

Subject Code: EE4L006	Name: Renewable Energy Systems	L-T-P: 3-0-0	Credits: 3
Prerequisite: P	ower Electronics, Power System Operation and Control	•	

Brief idea on renewable and distributed sources, their usefulness and advantages; Wind Energy Systems: Estimates of wind energy potential, wind maps, Instrumentation for wind velocity measurements, Aerodynamic and mechanical aspects of wind machine design, Conversion to electrical energy, Aspects of location of wind farms, Wind speed and energy, Speed and power relations, Power extraction from wind, Tip speed ratio (TSR), Functional structure of wind energy conversion systems, Pitch and speed control, Power-speed-TSR characteristics, Fixed speed and variable speed wind turbine control, Power optimization, Electrical generators, Self-Excited and

Doubly-Fed Induction Generators operation and control; Solar PV Systems: Present and new technological developments in photovoltaic, estimation of solar irradiance, components of solar energy systems, solar-thermal system applications to power generation, heating, Types of PV systems, Modeling of PV cell, current-voltage and power-voltage characteristics, Effects of temperature, Solar array simulator, Sun tracking, Peak power operations, PV system, MPPT techniques, Effects of partial shading on the characteristic curves and associated MPPT techniques; Hydel Power: Water power estimates, use of hydrographs, hydraulic turbine, characteristics and part load performance, design of wheels, draft tubes and penstocks, plant layouts; Brief idea of other sources viz., tidal, geothermal, gas-based, etc. Requirements of hybrid/combined use of different renewable and distributed sources, Need of energy storage; Control of frequency and voltage of distributed generation in Stand-alone and Grid-connected mode, use of energy storage and power electronics interfaces for the connection to grid and loads, Design and optimization of size of renewable sources and storages; Concept of microgrid, operation of microgrid in grid-connected as well as isolated mode, power quality problems and fault-ride through capability of microgrid; Integration of large capacity renewable sources to grid: Operation and control, trends and challenges, future needs viz., advanced characteristics of renewable energy generating units and plants, improved flexibility in conventional generation, transmission technology.

Text Books:

- 1. Math J. Bollen, Fainan Hassan 'Integration of Distributed Generation in the Power System', IEEE Press, 2011.
- 2. Loi Lei Lai and Tze Fun Chan 'Distributed Generation: Induction and Permanent Magnet Generators', Wiley-IEEE Press, 2007.
- 3. Studies' Craig Anderson and Rudolf I. Howard 'Wind and Hydropower Integration: Concepts, Considerations and Case, Nova Publisher, 2012.
- 4. Amanda E. Niemi and Cory M. Fincher 'Hydropower from Small and Low-Head Hydro Technologies', Nova Publisher, 2011.
- 5. D. Yogi Goswami, Frank Kreith and Jan F. Kreider 'Principles of Solar Engineering', Taylor & Francis 2000.
- 6. G. N. Tiwari 'Solar Energy Technology', Nova Science Publishers, 2005.
- 7. Math J. Bollen, Fainan Hassan 'Integration of Distributed Generation in the Power System', IEEE Press, 2011.
- 8. S. Heier and R. Waddington 'Grid Intergration of Wind Energy Conversion Systems', Wiley, 2006.

SEMESTER – VIII

Subject Code:	Name: Renewable Energy Systems Laboratory	L-T-P:	Credits: 2
EE4P002		0-0-3	
Prerequisite: Renewable Energy Systems			
Experiments on characteristics and control aspects of various renewable energy systems such			
as wind energy conversion system, photovoltaic systems, wave energy systems and hybrid			
systems etc. will be performed. Both isolated and grid-connected systems will be used in the			
experiments			

Syllabus for Elective Courses 1 and 2

Subject Code: EC4L001	Name: Semiconductor Devices	L-T-P: 3-0-0	Credits: 3
Prerequisite: Introduction to Electronics			

Semiconductor Fundamentals, Crystal Structure, Energy bands, Intrinsic and extrinsic semiconductors, Fermi Level, Carrier concentrations at thermal equilibrium, Carrier transport phenomenon: drift and diffusion, Scattering, Excess carriers in semiconductors: generation, recombination and injection of carriers, transient and steady state response, Basic governing equations in semiconductors; Physical description of p-n junctions, Transport equations, current-voltage characteristics, deviations from simple theory, small-signal ac analysis, metal-semiconductor junctions, hetero junctions; BJT fundamentals, operation regions, BJT equivalent circuits and modelling frequency response of transistors, pnpn diodes, SCR; MOS structure, flat-band threshold voltages, MOS static characteristics, small signal parameters and equivalent circuit, charge sheet model, strong, moderate and weak inversion, short channel effects, scaling laws of MOS transistors, LDD MOSFET, NMOS and CMOS IC technology, CMOS latch-up phenomenon; optical absorption in a semiconductors, photovoltaic effect, solar cell, photoconductors, PIN photodiode, avalanche photodiode, LED, semiconductor lasers; Negative conductance in semiconductors, transit time devices, IMPATT, Gunn device, BiCMOS devices.

Texts/References:

- 1. Ben G Streetman, S K Banarjee, Solid State Electronic Devices, 6th edition, PHI India, New Delhi, 2007.
- 2. R S Muller, T.I.Kamins, Device Electronics for Integrated Circuits, 3rd edition, Wiley-India, New Delhi, 2012.
- 3. S M Sze, K K Ng, Physics of Semiconductor Devices, 3rd edition, John Wiley, New Jersey, 2007.
- 4. P Bhattacharya, Semiconductor Optoelectronics, 2nd edition, Pearson, New Jersey, 1997.

Subject Code: EC6L005	Name: Statistical Signal Processing	L-T-P: 3-0-0	Credits: 3
Prerequisite: Digital Signal Processing			

Review of Probability and Stochastic Process; Estimation Theory: Minimum-variance unbiased estimator (MVUE), Cramer-Rao Lower bound, Best Linear Unbiased Estimator, Maximum likelihood Estimator, General Bayesian Estimator, Detection Theory: Neyman Pearson Theorem, Receiver Operating Characteristics, Matched Filters, Composite Hypothesis Testing; Nonparametric Spectral Estimation: Estimation of power spectrum of stationary random signal using periodogram-various methods, Joint signal analysis and estimation of cross power spectrum; Linear Signal Model: Synthesis of coloring filter and Analysis of whitening filter, Rational power spectra (AR, MA, ARMA), Relationship between filter parameters and autocorrelation sequences, Lattice-Ladder filter realization; Parametric Spectral Estimation: Order selection criterion of AR model , Minimum-variance, Maximum entropy and Maximum likelihood spectrum estimation Harmonic models and frequency estimation techniques Harmonic Decomposition, MUSIC algorithm, ESPRIT algorithm; Linear Optimum Filter: Optimum FIR Filter, PCA of optimum linear estimator and its frequency domain interpretation, Forward and Backward Linear prediction and optimum reflection coefficients Optimum causal and non-causal IIR Filters, De-convolution and Signal restoration Algorithms and Structure of Optimum

Linear Filters Levinson Recursion for optimum estimate, Order-recursive algorithms for optimum FIR filters and its lattice structures.

Texts/References:

- 1. S. M. Kay, Fundamentals of Statistical Signal Processing, Vol I: EstimationTheory, Vol II: Detection Theory, Prentice Hall, 1998.
- 2. Harry L. Van Trees, Detection, Estimation, and Modulation Theory, Part I, Wiley-Inter science, 2001
- 3. Monson H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley, 1996.

Subject Code: EE6L009	Name: High Voltage Engineering	L-T-P: 3-0-0	Credits: 3
Prerequisite: None			

Break Down in Solid Dielectrics: Intrinsic breakdown, electromechanical breakdown, thermal breakdown, breakdown of solid dielectrics in practice, Breakdown in composite dielectrics, solid dielectrics used in practice; Break Down in Gaseous and Liquid Dielectrics: Gases as insulating media, collision process, Ionization process, Townsend's criteria of breakdown in gases, Paschen's law; Generation of High Voltages and Currents: Generation of High Direct Current Voltages, Generation of High alternating voltages, Generation of Impulse Voltages, Generation of Impulse currents, Tripping and control of impulse generators; Measurement of High Voltages and Currents: Measurement of High Direct Current voltages, Measurement of High Voltages alternating and impulse, Measurement of High Currents-direct, alternating and Impulse, Oscilloscope for impulse voltage and current measurements.

Texts/References:

- 1. E. Kuffel, and W. S. Zaengl, J. Kuffel, "High Voltage Engineering: Fundamentals," CBS Publishers, 2005.
- 2. R. Arora and W. Mosch, 'High Voltage and Electrical Insulation Engineering' John Wiley & Sons, 2011.
- 3. W. Peek, and F. W. Peek "Dielectric Phenomena in High Voltage Engineering,: Rough Draft Printing, 2008.
- 4. L. L. Alston, "High Voltage Technology," Oxford University Press, 2011.

Subject Code: EE6L011	Name: Energy Storage Systems	L-T-P: 3-0-0	Credits: 3
Prerequisite: Introduction to Electronics			

Energy Storage Need of energy storage; Different modes of Energy Storage. Potential energy: Pumped hydro storage; KE and Compressed gas system: Flywheel storage, compressed air energy storage; Electrical and magnetic energy storage: Capacitors, electromagnets; Chemical Energy storage: Thermochemical, photo-chemical, bio-chemical, electro-chemical, fossil fuels and synthetic fuels. Hydrogen for energy storage. Solar Ponds for energy storage. Electrochemical Energy Storage Systems Batteries: Primary, Secondary, Lithium, Solid-state and molten solvent batteries; Lead Lead acid batteries; Nickel Cadmium Batteries; Advanced Batteries. Role of carbon nano-tubes in electrodes. Magnetic and Electric Energy Storage Systems Superconducting Magnet Energy Storage(SMES) systems; Capacitor and Batteries: Comparison and application; Super capacitor: Electrochemical Double Layer Capacitor (EDLC), principle of working, structure, performance and application, role of activated carbon and carbon nano-tube.

Texts/References:

- 1. R. Huggins, Robert 'Energy Storage', Springer, 2010.
- 2. Ter-Gazarian 'Energy Storage for Power Systems', Institution of Engineering and Technology, 1994.

Subject Code: EC4L002	Name: Opto-Electronics	L-T-P: 3-0-0	Credits: 3
Prerequisite: Introduction	on to Electronics		

Review of basic principles from physics, optical wave representation, interferometers, optical resonators, planar mirror resonators, modes of resonators, spherical mirror resonators, confinement, gaussian beams, photons and matter, energy levels; Photon optics: interactions of photons and atoms, population inversion, spontaneous and stimulated emission; Lasers: gain mechanism, rate equations, pumping, gain and gain coefficient, laser oscillation theory, laser types, power and spectral distribution , polarization, mode selection, light emitting diodes, fabry-perot lasers, erbium-doped fiber amplifiers (edfa); Photo detectors: properties of photo detectors, photoconductors, photodiodes. Avalanche photodiodes, phototransistors and noise mechanisms, signal-to-noise analysis, and modulation of optical signals, formats, and receivers; Noise and detection: types of noise and distortion which affects optical signals, methods of reducing effects of noise and distortion, optimal detection methods and devices; Overview of opto-electronic networks: fddi, fiber channel, sonnet.

Text Books:

- 1. Saleh and Teich, "Fundamentals of Photonics," Wiley Interscience, 2nd edition, 2007.
- 2. J. Senior, "Optical Fiber Communications. Principle and Practice," Prentice Hall.

Reference Books:

- 1. Wilson and Hawkes "Optoelectronics: An Introduction, Prentice Hall; 3rd Ed., 1997.
- 2. Journal Readings (IET- Optoelectronics)

Subject Code: EC6L002	Name: Image and Video Processing	L-T-P: 3-1-0	Credits: 4
Prerequisite: Digital Signal Processing			

Introduction to digital image processing, intensity transformation, spatial filtering, frequency domain filtering, point and line detection, edge detection, Hough Transform, image restoration, color processing, thresholding, image segmentation, affine transformation, image transforms, multi-resolution image analysis, shape and texture representation and description, introduction to object recognition, image compression, JPEG, introduction to digital video, video compression standards, motion estimation.

Texts/References:

- 1. Gonzalez and Woods, "Digital Image processing," 3rd Ed., Pearson and Prentice Hall, 2009.
- 2. W.K. Pratt, "Digital image processing," 4th Ed., Wiley India, 2007.
- 3. K.R. Castleman, "Digital image processing," 2nd Ed., Pearson, 2012.
- 4. A.K. Jain, "Fundamentals of digital image processing," Prentice Hall, 1989.

Subject Code: EE6L002	Name: Electric Power Quality	L-T-P: 3-0-0	Credits: 3
Prerequisite: Electrical Technology, Power Electronics			

Brief review of various power quality (PQ) problems: Source of generation and their impacts on equipment and systems, need of monitoring, international power quality standards, Passive Filters: Control of harmonics using passive L-C filters, tuned and de-tuned filters, their design criterion and implementation, Active Power Filters: Power factor improvement, reactive power

compensation, mitigation of harmonics and voltage sag compensation using active power filters. Study of various active power filters viz., static shunt compensators (STATCOM), dynamic voltage restorer (DVR), unified power quality conditioner (UPQC), etc. Suitability of type of active filters for mitigation of various power quality problems, Design of active power filters, various topologies and control schemes.

Texts/References:

- 1. A. Ghosh and Gerard Ledwich 'Power Quality Enhancement Using Custom Power Devices (Power Electronics and Power Systems)', Springer; 2002.
- 2. S. Santoso, H. W. Beaty, R. C. Dugan, and M. F. McGranaghan, 'Electrical Power Systems Quality', McGraw-Hill Professional, 2002.
- 3. M. H. Bollen 'Understanding Power Quality Problems: Voltage Sags and Interruptions', Wiley-IEEE Press, 1999.
- 4. N. G. Hingorani and L. Gyugy 'Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems', Wiley-IEEE Press, 1999.

Subject Code: EE6L010	Name: Advanced Power Electronics	L-T-P: 3-0-0	Credits: 3
Prerequisite: Power Electronics			

Advanced Switch Mode Power Converters: Cuk dc-dc converter, Full bridge dc-dc converter, Half-bridge converter Forward converter, Flyback converter, Push-pull converter, Resonant Converters: Introduction, classification of resonant converters, series and parallel resonant inverters, load resonant converters, resonant switch converters, zero voltage and zero current switching resonant converters, Multilevel Inverters: Concept, types of multilevel inverters, diode-clamped, flying-capacitor, and cascaded multilevel inverters, applications, comparison; FACTS: Principles of shunt and series compensation, compensators: TCR, TCS, SVC, TSSC, TCSC, UFC, comparison, Matrix converters: Basic principles and analysis, applications.

Texts/References:

- 1. M. H. Rashid, "Power Electronics: Circuits, Device and Applications", 2nd Ed. 1993, Prentice-Hall, Inc.
- N. Mohan, T. M. Undeland, and W. P. Robbins, "Power Electronics: Converters, Application and Design", 3rd. Ed., John Wiley, 2003
- 3. A. M. Trzynadlowski, "Introduction to Modern Power Electronics" John Wiley, 1998.

Subject Code: EE6L007	Name: Industrial Instrumentation	L-T-P: 3-0-0	Credits: 3
Prerequisite: Measurement and Electronic Instruments			

Introduction to Instrumentation system; Static and Dynamic characteristics of Instrument; Pressure measurement: Elastic transducers (Bourdon Gauge, Bellow and Diaphragm Gauge); Temperature measurement: Thermocouple, Resistance Temperature Detector (RTD), Thermistor, Radiation Pyrometer; Flow and pressure measurements: Differential Pressure flow meter, Variable area flow meter, Variable reluctance transducer, Turbine flow meter, Ultrasonic flow meter (Both transit time and Doppler Shift), Electromagnetic flow meter and Mass flow meter; Measurement of level: Capacitance based and Float based method; Measurement of strain: Strain Gauge; Position sensor: Linear Variable Differential Transformer (LVDT), Synchro; Load and torque cell; pH probe and viscosity measurement; Piezoelectric sensors; Ultrasonic

sensors; Pollution measurement; Smart sensors; Actuators and Control valves; Signal conditioning; Pneumatic and Hydraulic Instrumentation system.

Texts/References:

- 1. D. Patranabis, 'Principles of Industrial Instrumentation', Tata Mcgraw-Hill, 2001.
- 2. W. C. Dunn, 'Fundamentals of Industrial Instrumentation and Process Control', Mcgraw-Hill, 2005.
- 3. N. A. Anderson, 'Instrumentation for process measurement and control', CRC press, 1998.
- 4. E. Doebelin 'Measurement Systems: Application and Design', Mcgraw-Hill, 2003.

Syllabus for Elective Courses 3-6

Subject Code: Name: Biomedical Signal Processing	L-T-P:	Credits: 3	
EC6L015	3-0-0		
Prerequisite: Digital Signal Processing			
Nature of biomedical signals, Artifacts removal, Event detection, Wave shape analysis, Frequency-domain characterization, Biomedical system modeling, Non-stationary signal analysis, Detection of region of interests in biomedical images, Shape and texture analysis, oriented pattern analysis, Image reconstruction of projections, Pattern classification and diagnostic decision, presentation of different case studies.			
Texts/References:			
 R. M. Rangayyan, "Biomedical signal analysis," Wiley, 2011. R. M. Rangayyan, "Biomedical image analysis," CRC press, 2005. D. C. Reddy, Biomedical signal processing: principles and techniques, Tata McGrateria 	aw Hill, 20	12.	
4. Tompkins, Biomedical digital signal processing, Prentice Hall India, 1995.			
Subject Code: Name: Fiber Optic Sensors	L-I-P:	Credits: 3	
Prerequisite: None	5-0-0		
 Classification of sensors, modulation and demodulation mechanism of sensors, interferometric sensors, optical fibres Doppler systems, polarization modulation sensors, fibre optic sensors for the measurement of temperature, pressure, displacement, turbidity, pollution, etc., multiplexed sensor systems, other sensor applications. Text/References Books: R. Kasyap, 'Fiber Bragg Gratings', Academic Press, 2009. B. Glisic, D. Inaudi, 'Fibre Optic Methods for Structural Health Monitoring', Wiley, 2008. 			
Subject Code: Name: Embedded Systems	L-T-P:	Credits: 3	
EC4L008	3-0-0		
Prerequisite: Digital Electronics and Microprocessor			
Embedded Processing Systems: Introduction, Components of Embedded S Processor, Microcontrollers (PIC and ARM architectures), DSP and ASIC Devices: ROM and RAM family, Interfacing Memory, Simple I/O program their servicing, Timing Devices and Interfacing, Analog I/O Techniques, Design of Embedded Processors and Components, Design Case Communication: Parallel Bus Standards, Serial Bus Standards, Netwo Wireless Standards, Real Time Operating Systems (RTOS): Introduction, M I/O Management and Device Drivers, Scheduling, Introduction to Softwar System Life Cycle, Multicore and Heterogeneous Embedded Systems.	Systems Cs and So iming, In Introduc Studies, rking Sta emory N re Design	 Embedded OC, Memory terrupts and tion to HDL, Embedded andards and lanagement, Embedded 	

Text Books:

- 1. W. Wolf, Computers as Components: Principles of Embedded Computing System Design, 2nd Ed., Burlington, 2008.
- 2. T Noergaard, Embedded Systems Architecture: A comprehensive Guide for Engineers and Prgrammers, Elsevier,Oxford, 2005.

Reference Books:

1. Steve Heath, Embedded System Design, 2nd Edition, Newnes, Burlington, 2003.

Subject Code: EC6L027	Name: Pattern Recognition	L-T-P: 3-0-0	Credits: 3
Prerequisite: Dig	gital signal processing, Probability and stochastic processes		

Introduction to pattern recognition; Bayesian decision theory : Classifiers, Discriminant functions, Decision surface, Normal density and discriminant functions, Parameter estimation methods: Maximum-Likelihood estimation, Gaussian mixture models, Expectationmaximization method, Bayesian estimation, Hidden Markov models: Discrete hidden Markov models, Continuous density hidden Markov models; Dimensionality reduction methods: Fisher discriminant analysis, Principal component analysis; Non-parametric techniques for density estimation: Parzen-window method, K-Nearest Neighbour method, Linear discriminant function based classifiers: Perceptron, Support vector machines, Non-metric methods for pattern classification: Non-numeric data or nominal data Decision trees, Unsupervised learning and clustering: Criterion functions for clustering Algorithms for clustering: K-means, Hierarchical and other methods, Cluster validation.

Texts/References:

- 1. R.O.Duda, P.E.Hart and D.G.Stork, "Pattern Classification," John Wiley, 2001.
- 2. S.Theodoridis and K.Koutroumbas, "Pattern Recognition," 4th Ed., Academic Press, 2009.
- 3. C.M.Bishop, "Pattern Recognition and Machine Learning," Springer, 2006.

Subject Code: EC6L024	Name: Array Signal Processing	L-T-P: 3-0-0	Credits: 3
Prerequisites: Digital Signal Processing, Probability and Statistics processes			

Introduction: Array Processing and Applications, Arrays and Spatial Filters: Uniform Linear Array, Array Steering, Array Performance, Linear Aperture, Synthesis of Linear Arrays and Apertures: Spectral Weighting, Array Polynomials, Minimum Beamwidth, Null Steering, Spatially Nonuniform Linear Arrays, Broadband Arrays, Planar Arrays and Apertures: Rectangular Arrays, Circular Arrays, Circular Apertures, Non-planar Arrays, Characterization of Space-time Processes: Snapshot Models, Space-time Random Process, Optimum Waveform Estimation: Optimum Beamformers, MVDR and MPDR Beamformers, LCMV and LCMP Beamformers, Eigenspace Beamformer, Beamspace Beamformer, Broadband Beamformer, Adaptive Beamformers: Parametric Estimation, RLS, LMS, Gradient Algorithms, Parameter Estimation and Direction of Arrival Estimation: Cramer-Rao Bounds, Maximum Likelihood Estimation, Capon methods, Subspace methods - MUSIC, Minimum-Norm and ESPRIT techniques.

Text Books:

1. Harry L. Van Trees, Optimum Array Processing (Part IV of Detection, Estimation, and Modulation Theory), Wiley-Interscience, 2002.

Reference Books:

- D. E. Dugeon and D. H. Johnson, "Array Signal Processing: Concepts and Techniques," Prentice Hall, 1993.
- 2. P. Stoica and R. L. Moses, "Spectral Analysis of Signals," Prentice Hall, 2005.

Subject Code:	Name: Power System Dynamics & Control	L-T-P:	Credits: 4
EE6L003		4-0-0	

Prerequisites: Power System Operation and Control

Basic Ideas of Modeling of Synchronous machines, excitation systems and Governors- Steady state, Dynamic and Transient stability. State space formulation of single and multi-machine models with control equipments. Damping effects of FACTS devices.

Sub-synchronous Resonance: Modal Analysis, Torsional Oscillations, induction generator effect, Torsional interaction effect, countermeasure.

Application of numerical techniques to multi-machine dynamic and transient stability studies. Generation/Frequency Characteristics and load frequency characteristics, tie-line bias control, Automatic Generation Control, Alert and emergency system operation control. Control of reactive power flow: AVR, OLTC Transformers, FACTS, Static var compensators, system loss minimization, Emergency control, Reliability and security, Protective relaying.

Texts/References:

- 1. Yao-Nan Yu 'Electric Power System Dynamics', Academic Press, 1983.
- 2. Olle I. Elgerd 'Electric Energy Systems Theory: An Introduction', Tata McGraw Hill, 2001.
- 3. K. R. Padiyar 'Power System Dynamics: Stability and Control', B P B Publications, 2002.

Subject Code:	Name: Power System Protection	L-T-P:	Credits: 4
EE6L004		4-0-0	
Prereguisites: Electrical Power Transmission and Distribution			

Generation, propagation and interaction of electrical transients in electric power systems. Analysis of single and multiple transients including three phase and switching transients. Mathematical modeling of transmission lines and other power equipment in the presence of surge phenomena. Evolution in Protection systems, Characteristic of protective relays, Basic elements of Digital protection, signal conditioning and conversion, Fourier analysis and least square based techniques, Differential equation based techniques for transmission line applications, Fundamentals of travelling wave based techniques, Digital differential protection of transformers and transmission systems. Intelligent protection using ANN and Fuzzy systems, Application of advanced DSP in numerical relaying.

Texts/References Books:

- 1. A. T. Johns and S. Kalman 'Digital Protection for Power Systems', IET, 1997.
- 2. A. G. Phadke and J. Thorp 'Computer Relaying for Power Systems', Wiley, 2009.
- 3. A. Greenwood 'Electrical Transient in Power Systems', McGraw Hill, 1990.

Subject Code: Name: Distribution System Engineering L-T-P: Credite	s: 3		
EE6L017 3-0-0			
Prerequisites: Electrical Power Transmission and Distribution			
Introduction to power distribution system, Distribution transformer, Substation Bus Sche	mes,		
Substation Location, The Rating of a Distribution Substation , Substation Service Area w	ith n		
Primary Feeders, Comparison of the Four-and Six-Feeder Patterns, Derivation of the K Cons	stant,		
Substation Application Curves, Interpretation of the Percent Voltage Drop Formula, Adva	nced		
SCADA Concepts and Substation Automation, substation grounding, Radial and Loop	Туре		
Primary Feeder, Primary Network, Primary-Feeder Voltage Levels and Loading, Radial Fee	eders		
with Uniformly and Nonuniformly Distributed Load, A,B,C,D General Circuit Constants to R	adial		
Feeders, Design of Radial Primary and Secondary Distribution Systems, Secondary Voltage Le	evels		
and Networks, Economic Design, Three-Phase Balanced Primary Lines, Non three-Phase Pri	mary		
Lines, Four-Wire Multigrounded Common Neutral Distribution System, Distribution C	osts,		
Economic Analysis of Equipment Losses, Capacitors in Distribution Systems and Optim	mum		
allocation, Dynamic Behavior of Distribution Systems, Quality of Service and Voltage Stand	ards,		
Voltage Control, Feeder Voltage Regulators, Line-Drop Compensation, Distribution Capacitor			
Automation, Voltage Fluctuations.			
1. J. J. Burke "Power Distribution Engineering: Fundamentals and Applications", CRC Press, 1994.			

Reference Book:

1. Pabla, "Electric Power Distribution", McGraw-Hill Education, 2005

Subject Code:	Name: Information Theory and Coding	L-T-P:	Credits: 3
EC6L003		3-0-0	
Prerequisites: Digital Communication / Communication Systems			

Introduction: entropy and mutual information theory: joint entropy, conditional entropy, relationship between entropy and mutual information, chain rules for entropy, relative entropy, mutual information, jensen's inequality fano's inequality; An introduction to codes: coding: kraft inequality, optimal codes, bounds on optimal code length, kraft inequality for uniquely decodable codes, shannon and huffman codes, shannon, fano, elias codes, block codes, linear block codes, cyclic codes; Efficient encoding, information sources; average code word length; huffman encoding; noiseless coding: the noiseless coding theorem; Channel capacity: discrete memoryless channels and capacity, examples of channel capacity, symmetric channels, properties of channel capacity, channel coding theorem; Theory and practice of error-control coding: trellis diagram and the viterbi algorithm, convolution coding in mobile communications and modern graph-based codes (turbo-codes and ldpc codes), the main coding theory problem.

Text Books:

 T. M. Cover and J. A. Thomas, "Elements of Information Theory," 2nd Ed., Wiley-Interscience, 2006. ISBN-13: 978-0471241959.

 S. Lin and D. J. Costello, "Error Control Coding," 2nd Ed., Pearson Prentice Hall, 2004, ISBN-13: 978-0130426727.

Reference Books:

- 1. R. G. Gallager, "Information Theory and Reliable Communication," Wiley, 1968, ISBN-13: 978-0471290483.
- 2. I Csiszar and J. Korner, "Information Theory: Coding Theorems for Discrete Memoryless Systems," Akademiai Kiado, December 1981, ISBN-13: 978-9630574402.
- 3. T. S. Han, "Information-Spectrum Methods in Information Theory," Springer, 2002, ISBN-13: 978-3642078125.
- 4. Andre Neubauer, Jurgen Freedenberg, Volker Kuhn, "Coding theory Algorithm, Architectures and Applications", Willey India Editions, ISBN: 978-81-265-3432-6, 2007.
- 5. Ranjan Bose, "Information theory, Coding and Cryptography," TMH publication, ISBN: 978-0-07-0669017, 2008.
- 6. Roman, Steven, "Introduction to Coding and Information Theory", Springer, ISBN 978-0-387-94704-4
- 7. Journal readings.

Subject Code:	Name: Computational Electromagnetics	L-T-P:	Credits: 3
EC6L016		3-0-0	
Prerequisite: Electromagnetic Field Theory			

Applications of electromagnetics in the 21st century. Numerical Methods: ODE solvers, Euler, Runge-Kutta. Review of Basic Electromagnetics: Electrostatics, Magnetostatics, Wave Equations. Numerical Techniques: Method of Moements, Finite Difference Method, Finite Element method, Charge Simulation Method, Monte carlo method. Time Varying Electromagnetic Fiels: Eddy currents & skin depth, introduction to wavelets, families of wavelets. Microwaves, Optics, Micromagnetics, Bio-electromagnetics. Tutorials and demonstration on PC, programming assignments.

Text/ Reference Books:

- 1. M.N.O. Sadiku, "Numerical Techniques in Electromagnetic," 2nd Ed., CRC Press.
- 2. E. Weber, "Electromagnetic Fields," Dover, 1951.
- 3. P. P. Silvester, and R. L. Ferrari, "Finite Elements for Electrical Engineers," Cambridge University Press 1996.
- 4. J. Kiusalaas, "Numerical Methods in Engineering with Python," Cambridge.

Subject Code:	Name: Adaptive Signal Processing	L-T-P:	Credits: 3	
EC6L023		3-0-0		
Prerequisite: Digital Signal Processing				

Introduction to adaptive filters, optimal estimation, linear estimation: normal equation, orthogonality principle, linear models. Constrained linear estimation: minimum variance unbiased estimation, steepest descent algorithms, stochastic gradient algorithms: LMS algorithm, normalized LMS algorithm, RLS algorithm. Steady-state performance of adaptive filters, transient performance of adaptive filters, block adaptive filters, the least-squares criterion, recursive least-squares, lattice filters

Texts/Reference Books:

- 1. A. H. Sayed, "Fundamentals of Adaptive Filtering," Wiley, 2003.
- 2. S. Haykin, "Adaptive filter theory," Fourth edition, Pearson, 2012.
- 3. Widrow and Stearns, "Adaptive Signal Processing," Pearson, 2007.

Subject Code:	Name: HVDC and Flexible AC Transmission Systems	L-T-P:	Credits: 3
EE6L005		3-0-0	
Prerequisite: P	ower System Operation and Control, Power Electronics		

Description and application of HVDC transmission, DC System components and their functions, Converter configuration, Principles of DC Link control and Converter control characteristics, Firing angle, Current and extinction angle control, DC link power control, Reactive power control and VAR sources, MTDC system types; Power flow in AC Systems, Definition of FACTS, Constraints of maximum transmission line loading. Benefits of FACTS, Uncompensated line, shunt and series compensation, Phase angle control. SVC and STATCOM, Operation and Control of TSC, TRC and STATCOM, Compensator Control; TSSC, SSSC, Static voltage and phase angle regulators TCVR and TCPAR. Operation and Control applications, Unified Power Flow Controller, Circuit Arrangement, Basic Principle of P and Q Control, independent real and reactive power flow control, Applications; Introduction to interline power flow controller, Compensation Devices, STS, SSC, SVR, Backup energy supply devices, Special purpose FACTS controllers, Thyristor controlled voltage limiter and voltage regulator, Thyristor controlled braking resistor and current limiter.

Text Books:

- 1. N.G Hingorani, L. Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems", IEEE Press Book, Standard Publishers and Distributors, Delhi, 2001.
- 2. Padiyar K.R., "HVDC Power Transmission System", Wiely Eastern PVT Limited.

Reference Books:

- 1. E.W. Kimbark "Direct Current transmission", Vol.1, John Wielly, New York.
- 2. T,J.E Miller, "Reactive Power Control in Electric Systems", John Wiley & Sons.

Subject Code: EE6L014	Name: Smart Grid Technology	L-T-P: 3-0-0	Credits: 3
Prerequisite: P	ower System Operation and Control, Power Electronics		

Review of basic elements of electrical power systems, desirable traits of a modern grid, principal characteristics of the smart grid, key technology areas; Smart grid communication: Two way digital communication paradigm, network architectures, IP-based systems, Power line communications, advanced metering infrastructure; Renewable Generation: Renewable Resources: Wind and Solar, Microgrid Architecture, Tackling Intermittency, Distributed Storage and Reserves; Wide Area Measurement: Sensor Networks, Phasor Measurement Units, Communications Infrastructure, Fault Detection and Self-Healing Systems, Application and Challenges; Security and Privacy: Cyber Security Challenges in Smart Grid, Defense Mechanism, Privacy Challenges.

Texts/Reference Books:

- 1. J. Momoh 'Smart Grid: Fundamentals of Design and Analysis' Wiley-IEEE Press, 2012.
- 2. P. F. Schewe 'The Grid: A Journey through the Heart of our Electrified World' Joseph Henry Press, 2006.

Subject Code: EC6L004	Name: Advanced Digital Signal Processing	L-T-P: 3-0-0	Credits: 3	
Prerequisite: Digital Signal Processing				

Multi-rate digital signal processing: decimation, interpolation, sampling rate conversion, digital filter banks, two-channel quadrature mirror filter bank, M-channel QMF bank, Linear prediction and optimum linear filters: forward and backward linear prediction, normal equations, AR lattice and ARMA lattice-ladder filters, Wiener filters, Power spectrum estimation: nonparametric and parametric methods, filter bank methods, Eigen analysis algorithms, Time-frequency analysis: uncertainty principle, Short-time Fourier transform, Wigner distribution, Kernel design, Gabor wavelets, multi-resolution analysis.

Texts/Reference Books:

- Proakis and Manolakis, "Digital Signal Processing: Principles, Algorithms and Applications," 4th Ed., Pearson, 2012.
- 2. Cohen , "Time-frequency Analysis," Prentice-Hall, 1995.
- 3. Vaseghi, "Advanced digital signal processing," 4th Ed., Wiley, 2008.
- 4. Vaidyanathan, "Multi-rate systems and filter banks," Pearson, 1992.

Subject Code:	Name: Semiconductor Device Modelling	L-T-P:	Credits: 3	
EC6L017		3-0-0		
Pre-requisite: Semiconductor Devices				

Review of semiconductor physics: Quantum foundation, Carrier scattering, high field effects; P-N junction diode modeling: Static model, Large signal model and SPICE models; BJT modeling: Ebers - Moll, Static, large-signal, small- signal models. Gummel - Poon model. Temperature and area effects. Power BJT model, SPICE models, Limitations of GP model; Advanced Bipolar models: VBIC, HICUM and MEXTARM;MOS Transistors: LEVEL 1, LEVEL 2 ,LEVEL 3, BSIM, HISIMVEKV Models, Threshold voltage modeling, Punchthrough, Carrier velocity modeling, Short channel effects, Channel-length modulation, Barrier lowering, Hot carrier effects, Mobility modeling, Model parameters; Analytical and Numerical modeling of BJT and MOS transistors; Types of models for Heterojunction Bipolar Transistors, Compact modeling concepts, Modeling of HBTs, HBT noise models, Measurement and parameter extraction.

Text Books:

- 1. G. Massobrio, P. Antognetti, Semiconductor Device Modeling with SPICE, 2nd edition, McGraw-Hill, New York, 1993.
- 2. M. Rudolph, Introduction to Modeling HBTs, Artech House, Boston, 2006.

Reference Books:

- 1. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd edition, John Wiley, New Jersey, 2007.
- 2. G. A. Armstrong, C. K. Maiti, Technology Computer Aided Design for Si, SiGe and GaAs Integrated Circuits, IET Series, London, 2007.

Subject Code: EE6L015	Name: Advanced High Voltage Engineering	L-T-P: 3-0-0	Credits: 3
Prerequisite: N	lone		

High Voltage Testing of Electrical Apparatus: Testing of Insulators and bushings, Testing of Isolators and circuit breakers, Testing of cables, Testing of Transformers, Testing of Surge Arresters, Radio Interference measurements;

Partial discharges and their measurement: Introduction, Partial discharge degradation mechanisms, Partial discharge measurements.

Non Thermal Atmospheric Pressure Plasma: Non-thermal plasma stabilization at high pressure, Townsend and spark breakdown mechanisms, corona discharge, pulse corona discharge, dielectric barrier discharge, spark discharge, atmospheric pressure glows, microplasmas.

Text/ Reference Books:

- 1. D. K. K. Feser, and Y. N. Rao "High-Voltage Test Techniques" Newnes, 2001.
- 2. D. A. Lloyd "Electrostatic Precipitator Handbook," Institute of Physics Publishing, 1988.
- 3. M. Haddad and D. Warne "Advances in High Voltage Engineering" IET, 2009.
- 4. J. Ernest Harry 'Introduction to Plasma Technology' Wiley-vch Verlag Gmbh, 2010.
- 5. J. Reece Roth, J. Reece Roth, and Roth J. Reece 'Industrial Plasma Engineering Volume-2' Taylor & Francis Group, 2001.
- 6. B. M. Penetrante, 'Non-Thermal Plasma Techniques for Pollution Control: Part B: Electron Beam and Electrical Discharge Processing' Springer, 2012.

Subject Code:	Name: Advanced Electric Machines	L-T-P:	Credits: 3
EE4L004		3-0-0	
Prereguisite: Ele	ectric Machines, Electromagnetic Field Theory		

Single Phase Induction Motors And Special Machines: Constructional details of single phase induction motor – Double revolving field theory and operation – Equivalent circuit – No load and blocked rotor test – Performance analysis – Starting methods of single-phase induction motors - Shaded pole induction motor - Linear reluctance motor - Repulsion motor - Hysteresis motor - AC series motor; Synchronous Reluctance Motors: Constructional features – Types – Axial and radial air gap motors – Operating principle – Reluctance – Phasor diagram -Characteristics – Vernier motor; Stepping Motors: Constructional features – Principle of operation - Variable reluctance motor - Hybrid motor - Single and multi-stack configurations -Theory of torque predictions – Linear and non-linear analysis – Characteristics – Drive circuits. Switched Reluctance Motors: Constructional features – Principle of operation – Torque prediction – Power controllers – Non-linear analysis – Microprocessor based control Characteristics – Computer control; Permanent magnet brushless d.c. Motors: Principle of operation – Types – Magnetic circuit analysis – EMF and torque equations – Power controllers – Motor characteristics and control; Permanent Magnet Synchronous Motors: Principle of operation - EMF and torque equations - Reactance - Phasor diagram - Power controllers -Converter - Volt-ampere requirements – Torque speed characteristics - Microprocessor based control.

Text Book:

1. T.J.E. Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford, 1989.

- P.P. Aearnley, "Stepping Motors A Guide to Motor Theory and Practice", Peter Perengrinus, London, 1982.
- 3. D.P. Kothari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2002.
- 4. P.S. Bhimbhra, 'Electrical Machinery', Khanna Publishers, 2003.

Reference Book:

- 1. T. Kenjo, "Stepping Motors and Their Microprocessor Controls", Clarendon Press London, 1984.
- T. Kenjo and S. Nagamori, "Permanent Magnet and Brushless DC Motors", Clarendon Press, London, 1988.
 A.E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata McGraw Hill publishing Company Ltd, 2003.
- 4. J.B. Gupta, 'Theory and Performance of Electrical Machines', S.K.Kataria and Sons, 2002.
- 5. K. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt Ltd, 2002.

Subject Code:	Name: Electric Drives	L-T-P:	Credits: 3	
EE4L003		3-0-0		
Prerequisites: Power Electronics, Electric Machines				

Introduction : Parts of electric drives, choice of drive, relative features of AC and DC drives, Dynamics and control of electric drives: Fundamental equations, multi-quadrant convention, equivalent drive parameters, load torque components, steady state stability, modes of operation, closed-loop control, PLL control, position control, selection of motor power rating, DC motor drives: Performance of dc motors, starting, braking, transient analysis, speed control, methods of armature voltage control, modes of speed control, Ward-Leonard drives, single phase and three phase controlled rectifier-fed dc drives, dual converter control, chopper controlled dc drives, rectifier control of dc series motor, performance analysis, Induction motor drives: Analysis and performance, starting, braking, speed control, stator voltage control, variable voltage variable frequency control, rotor resistance control, slip power recovery, Synchronous motor drive: Analysis and performance, characteristics of synchronous motor, power factor rating, operation from fixed frequency supply, variable speed drives, Traction drives: Traction load and motors, dc and ac traction drives.

Text Books:

- 1. M. H. Rashid, "Power Electronics: Circuits, Device and Applications", 2nd Ed. 1993, Prentice-Hall, Inc.
- N. Mohan, T. M. Undeland, and W. PRobbins, "Power Electronics: Converters, Application and Design", 3rd Ed., John Wiley, 2003.
- 3. G. K. Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House, 1995.

Subject Code: EE6L018	Name: Power System Planning	L-T-P: 3-0-0	Credits: 3
Prerequisite: P	ower System Operation and Control		

Basic Planning Issues: Introduction, Power system elements and structure, Static and dynamic planning, Transmission and distribution planning; Ling-term and short-term planning, Basic issues in transmission planning; Optimization Techniques: Introduction; Problem definition and modelling, Mathematical and heuristic solution algorithms; Economic Principles: Introduction, Definition of various terms, Cash flow concept: time value of money and economic terms, Economic analysis: present worth method, annual cost method, Rate of return method, Example; Load Forecasting: Introduction, Load characteristics and driving parameters, Spatial

load forecasting, Long-term forecasting methods: trend analysis, econometric modelling, enduse analysis, combined analysis, Examples - load forecasting of small and large scale utility; Single and Multi-bus Generation Expansion Planning: Problem description and mathematical formulation, Objective functions and constraints, Solution approaches; Substation Expansion Planning: Problem definition and formulation, Mathematical view: objection function and constraints, required data; Solution methodologies, Case studies; Network Expansion Planning: Problem definition and formulation: objective function and constraints, Solution methodologies: enumeration and heuristic methods, Case study; Reactive Power Planning: Introduction, Voltage profile and stability, Performance control parameters, Static and dynamic reactive power sources, Static reactive resource allocation and sizing, Dynamic reactive resource allocation and sizing, Solution methods, Case study; Planning with System Uncertainties: Introduction, Deregulation, Uncertainties in regulated and deregulated environment, Practical planning issues in deregulated environment, Dealing with uncertainties in planning: expected cost criterion, min-max regret criterion, Laplace criterion, and VNM criterion.

Text Books:

- 1. H. Seifi and M. S. Sepasian, "Electric Power System Planning: Issues, Algorithms and Solutions", 2011, Springer.
- 2. R. L. Sullivan, "Power System Planning", 1987, McGraw Hill.

Reference Books:

1. J. Schlabbach and K-H. Rofalsk, "Power System Engineering: Planning, Design, and Operation of Power Systems and Equipment", 2008, Wiley.

Dual Degree: B. Tech. (Electrical Engineering) + M. Tech. (Power Electronics and Drives) (7th Semester – 10th Semester Courses)

	SEMES	TER – V	II		
Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.
Switched Mode Power Conversion	EE6L051	3-1-0	4	4	U
Digital Control Systems	EE4L005	3-0-0	3	3	31
Renewable Energy Systems	EE4L006	3-0-0	3	3	31-32
Theory and Analysis of Electric Drives	EE6L052	3-1-0	4	4	
Switched Mode Power Conversion Laboratory	EE6P052	0-0-3	2	3	
Industrial Training Defence	EE4T001	0-0-0	2	2	
Project- Part 1	EE4D001	0-0-6	4	0	
		Total	22	17	
	SEMEST	$\Gamma ER - V$	III		
Advanced Power Electronic Converters	EE6L053	3-0-0	3	3	
Advanced Machine Drives	EE6L055	3-1-0	4	4	
Grid Integration of Renewable Energy	EE6L013	3-0-0	3	3	
Systems					
Power Converter and Electric Drives	EE6P053	0-0-3	2	3	
Laboratory					
Renewable Energy Systems Laboratory	EE4P002	0-0-3	2	3	33
Project- Part 2	EE4D002	0-0-9	6	0	
		Total	20	16	
	SEMES	TER – I	X		
Elective I		3-0-0	3	3	
Elective II		3-0-0/3-1-0	3/4	3/4	
Power Electronics System Simulation	EE6P051	0-0-3	2	3	50
Thesis Part I	FF6D051	0-0-0	12	0	
	2200001	Total	20/21	9/10	
	SEMES	STER - 2	X	5,10	1
Elective III		3-0-0/3-1-0	3/4	3/4	
Thesis Part II	EE6D053	0-0-0	13	0	
		Total	16/17	3/4	

List of Elective Courses

Subject Name	Subject Code	L-T-P	Credit	Contact Hour	Syllabus Page No.	
Elective	- 1, 2					
Semiconductor Devices	EC4L001	3-0-0	3	3	34	
Dynamics of Linear Systems	EE6L056	3-0-0	3	3	56	
Statistical Signal Processing	EC6L005	3-0-0	3	3	34-35	
High Voltage Engineering	EE6L009	3-0-0	3	3	35	
Energy Storage Systems	EE6L011	3-0-0	3	3	35	
Opto-Electronics	EC4L002	3-0-0	3	3	36	
Image and Video Processing	EC6L002	3-1-0	4	4	36	
Electric Power Quality	EE6L002	3-0-0	3	3	36-37	
Industrial Instrumentation	EE6L007	3-0-0	3	3	37-38	
Artificial Intelligence	CS6L019	3-0-0	3	3	56	
Optical Communication	EC6L012	3-0-0	3	3	57	
Elective – 3, 4, 5, 6						
Biomedical Signal Processing	EC6L015	3-0-0	3	3	39	
Fiber Optic Sensors	EC6L019	3-0-0	3	3	39	
Embedded Systems	EC4L008	3-0-0	3	3	39-40	
Pattern Recognition	EC6L027	3-0-0	3	3	40	
Array Signal Processing	EC6L024	3-0-0	3	3	40-41	
Power System Dynamics & Control	EE6L003	4-0-0	4	4	41	
Power System Protection	EE6L004	4-0-0	4	4	41	
Distribution System Engineering	EE6L017	3-0-0	3	3	42	
Computational Electromagnetics	EC6L016	3-0-0	3	3	43	
Adaptive Signal Processing	EC6L023	3-0-0	3	3	43	
HVDC and Flexible AC Transmission Systems	EE6L005	3-0-0	3	3	44	
Computer Vision	EC6L029	3-0-0	3	3	57	
Smart Grid Technology	EE6L014	3-0-0	3	3	44	
Semiconductor Device Modelling	EC6L017	3-0-0	3	3	45	
Advanced High Voltage Engg.	EE6L015	3-0-0	3	3	46	
Power System Planning	EE6L018	3-0-0	3	3	47-48	

SEMESTER – VII

Subject Code:	Name: Switche	ed Mode Pow	er Conversi	on	L-T-P: 3-1-0	Credits: 4
EE6L051						
Linear voltage reg	ulators, basic	structures, ad	lvantages a	nd di	sadvantages; S	teady state
analysis of basic DC	C-DC converters	(Buck, boost,	buck-boost) Stead	dy state analysi	s of derived
DC-DC (Cuk, SEPIC,	Quadratic) conv	erters. Steady	/ state analy	sis of t	transformer iso	lated DC-DC
converters (Forwa	ard, Flyback,	push-pull, br	idge) Swit	ched	mode voltage	e regulator
specifications, bloc	k diagram, Mod	eling approach	h, assumptio	ons an	d approximatio	ns. Dynamic
models and transfe	r functions of ha	ard switched co	onverters in	CCM a	and DCM mode	s. Regulator
design example Cu	rrent Programm	ned converters	s, Block dia	gram, :	stabilization, m	odeling and
transfer functions.	Single phase PF	C circuits. Res	sonant Conv	verters	s, Soft switchin	g principles:
ZVS, ZCS, ZVZCS Re	sonant Load Co	onverters: Var	iable freque	ency se	eries and paral	lel resonant
converters (Resona	nt Switch Conv	erters (quasi r	resonant): H	lalf an	d full wave ope	erations and
control. Resonant	Transition Phas	e Modulated	Converters	, Redu	uction of VA ra	atings, fixed
frequency operatio	n and advantag	eous usages o	of device an	d trans	sformer non-id	ealities; Soft
Switched Bidirectio	nal DC-DC Conve	erters (Dual Ac	ctive Bridge)	: Soft-	switching unde	r buck mode
and boost mode o	perations with	or without ac	ctive clamp	PWM	Converters w	th Auxiliary
Switch, ZVT /ZCT P	VM Converters:	Isolated and N	Non-isolated	d topo	logies with auxi	liary switch;
Auxiliary Resonant	Commutated F	ole Inverters:	: ZVT and Z	ZCT co	ncepts used fo	or Inverters;
Resonant DC Link Ir	verters: Forced	oscillation of	DC Link volt	age by	/ auxiliary switc	h.

Texts/References:

1. M H. Rashed, 'Power Electronics Circuits, Devices and Applications', Prentice Hall of India Pvt. Ltd, 2004.

R. W. Erickson and D. Maksimovic, 'Fundamental of Power Electronics', Springer International Edition, 2005.
 N. Mohan, T. M. Underland, and W. Robbins, 'Power Electronics Converters, Applications and Design', John Wiley

and	Sons.	Inc.,	2004.
-----	-------	-------	-------

Subject	Code:	Name:	Theory	and	Analysis	of	Electric	L-T-P: 3-1-0	Credits: 4
EE6L052		Drives							

Introduction and review of electrical machines; Principles of electromagnetic energy conversion: General expression of stored magnetic energy, co-energy and force/torque, example using single and doubly excited system. Calculation of air gap mmf and per phase machine inductance using physical machine data; Voltage and torque equation of dc machine, three phase symmetrical induction machine and salient pole synchronous machines in phase variable form. Introduction to reference frame theory: static and rotating reference frames, transformation relationships, examples using static symmetrical three phase passive circuits. Generalized theory of rotating electrical machine and Krons primitive machine; Modelling of D.C and 3- phase symmetrical induction and synchronous machines; voltage and torque equations, derivation of steady state phasor relationship from dynamic model. Analysis and dynamic modelling of two phase asymmetrical induction machine and single phase induction machine.

Introduction to Electric Drives – Need of electric drives, basic parts, present scenario of electric drives Mechanical Dynamics in an Electric Drive - Speed-torque characteristics of some common motors and loads, multi quadrant operation, equivalent values of drive parameters, stability of an electric drive General Block Diagram of a Closed Loop Drive System – Speed,

torque and position control Selection of Motor Power Rating – Thermal model of motor for heating and cooling, classes of motor duty, determination of motor rating Chopper Controlled DC Motor Drive – Different types of choppers and their quadrants of operations, PWM strategies for different choppers, chopper control of series DC motor. Power Semiconductor Switches Used in an Electric Drive System - Basic structure, V-I characteristics and switching characteristics of thyristors and IGBTs, gate drive and protection circuits of thyristors and IGBTs. DC Motor Drive Using Phase Controlled Rectifier – DC motor drive using half controlled and fully controlled single phase and three phase rectifiers, continuous and discontinuous conduction modes of operation, 4-quadrant operation using dual converter. Closed Loop Control of DC Motor – Operating limits of a separately excited DC motor drive, dynamic model of DC motor, dynamic model of chopper and phase controlled rectifier, design of single loop speed controller, cascaded controller design for DC motor using inner current control loop and outer speed control loop, field weakening operation.

Texts/References:

- 1. P. C. Krause, O. Wasynczuk and S. D. Sudhoff, 'Analysis of Electric Machinery and Drive Systems', John Wiley & Sons, New York, 2006.
- 2. Chee-Mun Ong, 'Dynamic Simulation of Electric Machinery using MATLAB', Prentice Hall PTR, 1998.
- 3. P. S. Bimbhra 'Generalized theory of electrical machines', Khanna Publishers Delhi, 1995.
- 4. G. K. Dubey, 'Fundamentals of Electrical Drives', CRC Press, 2002.

Subject Code:	Name: Switched Mode Power Conversion	L-T-P: 0-0-3	Credits: 2		
EE6P052	Laboratory				
Constant current Load, 15V Voltage regulator with current limit, Constant current-constant					
voltage regulator, Non-isolated Boost converter, Non-isolated Fly-back converter, Non -isolated					
Forward converter, Current mode control of Boost Converter, Current mode control of Forward					
Converter, soft-sw	itched converter.				

SEMESTER – VIII

Subject Code:	Name:	Advanced	Power	Electronic	L-T-P: 3-0-0	Credits: 3	
EE6L053	Converte	ers					
High-Power Semi	High-Power Semiconductor Devices, Diodes, SCR, GTO, GCT, IGBT. Operation of series						
connected devices	: main ca	use of unba	lance, vo	ltage equaliz	ations for GCTs, IC	BTs. Multi-	
pulse Diode and	SCR Rectifi	iers, Definiti	ion of T⊦	ID and PF, T	HD and PF of six-	pulse diode	
rectifier, 12, 18, 24	- pulse seri	ies-type and	separate	-type diode r	ectifiers, Six-pulse a	ind 12-pulse	
SCR rectifier, Effe	ect of line	e and leaka	ige induc	ctances, and	Phase-Shifting Tr	ansformers,	
Harmonic current	cancellatio	n. Cascaded	HBridge I	Multilevel Inv	erters, Introduction	۱, Sinusoidal	
PWM, Space Vect	or PWM in	two level v	oltage so	urce inverter	s; H-bridge inverte	r, multilevel	
inverter topologie	s: CHB Inve	erter with eo	qual dc vo	oltages, H-bri	dges with unequal	dc voltages,	
Carrier based PW	M scheme	es: Phase sh	ifted mu	lti-carrier mo	odulation, Level sh	ifted multi-	
carrier modulation	, over-mo	dulation of c	cascaded	H-bridges, Co	ontrol of dc bus vol	tages of the	
H-bridges. Diode-(lamped M	lultilevel Inv	erters, Th	nree level inv	erter: Converter co	nfiguration,	
switching states, C	arrier base	d PWM: Nat	urally san	npled PD PW	M, APOD and POD F	WM; Space	
vector modulation	1: Optimiz	ed space ve	ector seq	uences, moc	lulator for selectin	g switching	
states, decomposi	tion metho	od, hexagon	al co-ordi	inate system	, optimal space vec	tor position	
within a switchin	g period;	Neutral poi	nt voltag	e control, o	ver modulation of	three-level	
inverter, High-leve	alode ci	amped inve	erters. Hy	brid Multile	vel inverters: Hybr	idization of	
Fundamental freq	iency swite	ching (FFS) a	nd PWIVI	switching inv	erters: inverter top	ologies with	
isolation transform	ner, PWM	switching s	strategy;	Transformer	less hybrid inverte	r: Binary H-	
bridge multilevel converter, Control of dc bus voltages of different modules. Multilevel Flying							
Pactifiers and Inverters: Transzoidal modulation, Modulation Scheme, PWM Current Source							
Rectifiers and inve	itters: Trap		ulation, S	belective harr	nonic Elimination, S	space vector	
bridge current source rectifier. Power factor control. Active Damping Control. Wide Band gap							
devices and Parfor	mance and	Design of C	Converter	oi, Active Da	Band gan devices	ie Danu-gap	
devices and i entor	manee and	Design of C		s using white	Dand-gap ut vites.		

Texts/References:

- 1. L. Umanand 'Power Electronics Essentials and Applications', Wiley India Pvt. Ltd., 2009.
- 2. B. Wu, 'High Power Converter and AC Drives', IEEE Press Wiley Interscience, 2006.
- 3. M. P. Kazmierkowski, R. Krishnan and F. Blaabjerg 'Control in Power Electronics -Selected Problems', Academic Press Series in Engineering, 2002.

Subject	Code:	Name: Grid Integration of Renewable	L-T-P: 3-0-0	Credits: 3
EE6L013		Energy Systems		

Control of frequency and voltage of distributed generation in Stand-alone and Grid-connected mode, use of energy storage and power electronics interfaces for the connection to grid and loads. Design and optimization of size of renewable sources and storages.

Concept of microgrid, operation of microgrid in grid-connected as well as isolated mode, power quality problems and fault-ride through capability of microgrid.

Integration of large capacity renewable sources to grid: Operation and control, present trends, challenges, future technological needs viz., advanced characteristics of renewable energy

generating units and plants, improved flexibility in conventional generation, transmission technology.							
 Texts/References: 1. Math J. Bollen, Fainan Hassan 'Integration of Distributed Generation in the Power System', IEEE Press, 2011. 2. S. Heier and R. Waddington 'Grid Intergration of Wind Energy Conversion Systems', Wiley, 2006. 3. Loi Lei Lai and Tze Fun Chan 'Distributed Generation: Induction and Permanent Magnet Generators', Wiley-IEEE Press, 2007. 							
Subject Code: EE6L055	Name: Advanced Machi Drives	ne L-T-P: 3-1-0	Credits: 4				
Subject Code: EE6L055 Name: Drives Advanced Machine Machine L-T-P: 3-1-0 Credits: 4 Induction Motor Drives: Field oriented control- Direct and indirect field orientation, stator-flux, rotor-flux and airgap-flux orientation. Flux-torque decoupling, Extended speed operation and Field weakening. Direct torque control of Induction Motor, Flux and speed observers, Induction generators, Doubly Fed Induction Machines (DFIM): Different modes of operation, Equivalent circuit, Active and reactive power control, Vector control of DFIM. Identification of Induction Motor Parameters: Linear Model, Nonlinear least square identification, Parameter error indices. Speed sensor-less control: Signal injection and model based techniques, zero/low speed operation. Synchronous Motor Drives, Vector controlled Cycloconverter fed Drive, Parameter estimation and sensor-less control. Introduction to PM Synchronous Motor, Various rotor configurations of PMSM, Sinusoidal Back-Emf PMSM: Field oriented control, Direct torque control. Interior PM Machine: Maximum torque per ampere control, Field weakening Introduction to Brushless DC Motor: EMF and Torque of BLDC machine, Voltage Source Inverter fed BLDC: Half-wave and Full-wave operation, Speed control, Torque ripple minimization, Sensor-less operation. Texts/References: 1 P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery and Drive Systems', John Wiley & Sons, New York, 2006. 2 B. K. Bose, 'Modern Power Electronics and AC Drives', Pearson Education, 2005. 3 W. Leonhard, 'Control of Electric Drives', Springer International Edition, 2001.							
Subject Code:	Name: Power Converter a	nd L-T-P:	Credits: 2				
Active Power Fact	cor control, Parameterization	of Industrial	Drive, Converter Drive with				
Active Power Factor control, Parameterization of industrial Drive, Converter Drive with Universal motors, Self Commutated Four quadrant converter. Slip, control of asynchronous							

Active Power Factor control, Parameterization of industrial Drive, Converter Drive with Universal motors, Self-Commutated Four quadrant converter, Slip control of asynchronous motor, Frequency converter with three phase asynchronous motor, Electronically commutated Synchronous machine, Smooth starting of Three phase machine, PLC controlled Drive system

SEMESTER – IX

Subject	Code:	Name:	Power	Electronics	L-T-P: 0-0-3	Credits: 2	
EE6P051		System		Simulation			
		Laborat	ory				
Introduction to schematic design, Design of power PCB, Design of sandwiched Bus-bar,							
Introduction to	Introduction to DSP/FPGA programming for power application, PWM generation exercise,						
Simulation of I	Simulation of DC-DC converter, Grid connected Inverter, Loss estimation techniques, Power						
Quality improvement studies, Input Filter design and noise reduction.							
				-			

Syllabus for Elective Courses

Subject Code	Name: Dunamics of Lincor Systems	1 7 0. 2 0	Cradita: 2					
Subject Code:	Name: Dynamics of Linear Systems	L-I-P: 3-U-	Credits: 3					
Brerequisite: None								
Freiequisite. None								
Background mate	erial on matrix algebra, differential equations, linear	operators, Re	presentation					
of dynamic syste	ms, equilibrium points and inearization of nonlin	ear systems,	Jordan form,					
orgunation Natura	Land forced response of state equations, state en	systems, Lyap						
roalizations Obs	any bility and controllability minimal realization		composition					
controllability an	id observability indices in MIMO systems. Linear	state variah	le feedback					
stabilization no	e-placement methods for obtaining feedback	gains in MI	AO systems					
Asymptotic obser	vers, compensator design, and separation principle	. reduced ord	er observers.					
Considerations for	or system gains, Discretization of CT systems.	,	,					
	, , ,							
1. Chi-Ts	ong Chen, Linear Systems Theory and Design, 2nd edition, HBJ 1984	ŀ.						
2. K. Oga	ta, Modern Control Engineering, Prentice Hall, 2006.							
Subiect Code:	Name: Artificial Intelligence	L-T-P: 3-0-0	Credits: 3					
CS6L019	······································							
Prereguisite: Intro	duction to Programing and Data Structures							
•	0 0							
Introduction to A	rtificial Intelligence: What is AI? Related Fields, Age	nts and Enviro	onments					
Problem Solving:	problem representation paradigms, state space, sat	tisfiability vs c	ptimality					
Search Technique	es: Principles of search, uninformed search, inf	ormed searc	h, constraint					
satisfaction probl	ems, adversarial search and games							
Knowledge Rep	resentation: Knowledge representation : First or	rder and no	n-monotonic					
logic; rule based,	frame and semantic network approaches, mixed	representatio	ons, Theorem					
Proving, knowled	ge bases and inference							
Uncertainty Trea	tment : formal and empirical approaches includir	ng Bayesian t	heory, belief					
functions, certain	ity factors							
Fuzzy Logic: Taga	ki-Sugeno Fuzzy Logic;, Mamdani Fuzzy Logic, Fuzzy	Bayesian Deci	sion Method,					
Nembership Fun	ctions, Fuzzification and Defuzzification, Fuzzy syste	m wodeling						
Planning and mai	arning decisions	ndits and Ma	nto carlo troo					
sourch								
Text books:								
1. Russell and Norvig. Artifiicial Intelligence: A Modern Approach. Pearson Education (Low Priced Edition),								
2004.	n Artificial Intelligence - A New Synthesis Morgan Kaufmann	Publishers 2000						
3. George F.Lu	ger and William A. Stubblefield, AI: Structures and Strategies	for Complex prol	, plem solving,					
2nd edition	Benjamin Cummins Publishers	r - r	<i>.</i> ,					
Reference books	Reference books:							

- 1. Mark Stefik, Introduction to Knowledge Systems, Morgan Kaufmann.
- 2. E. Rich and K.Knight, Artificial Intelligence, Tata McGraw Hill
- 3. E. Charniack and D. Mcdermott, Artificial Intelligence, Addison Wesley

Subject	Code:	Name: Optical Communication	L-T-P: 3-0-0	Credits: 3			
EC6L012							
Prerequisi	te: Analo	g and Digital Communications					
Introduction: Fundamentals of Light, Optics, Optical Fibers, Dielectric waveguides: Attenuation, wavelength dispersion, modes, fields; Light sources and optical amplifiers: Semiconductor laser, light-emitting diode, rate equations, output power, modulation response, chirp, noise, optical amplifiers. Detectors: PIN-diode, avalanche diode, responsivity, bandwidth, noise, Transmission systems: Optical links, direct detection systems, soliton							
systems, co signal depe System Des	systems, coherent systems, multilevel signaling, dispersion limitations, attenuation limitations, additive noise, signal dependent noise, bit error rate, optical networks, Wavelength-Division-Multiplexing and challenges, Optical System Design and Performance analysis using software tools. Current issues & topics of optical fibre systems						
Text Books	:						
 G. Keiser Govind A References J. Senior, R. Ramas S. C. Gup John A, " 	 G. Keiser, "Optical Fibre Communications", Tata McGraw-Hill Education, 4th Ed., 2008. Govind Agrawal, "Fibre-Optic Communication Systems,' 4th Ed., Wiley, 2010. References: J. Senior, "Optical Fibre Communications: Principles and Practice," 3rd Ed., Prentice Hall, 2008. R. Ramaswami, K. N. Sivarajan, "Optical Networks: A Practical Perspective," 3rd Ed., Morgan Kaufmann, 2009. S. C. Gupta, "Textbook on Optical Fiber Communication and Its Applications," PHI Learning, 2004. John A, "Buck Fundamental of Optical Fiber," Wiley-Interscience, 2004. 						
Subject	Code:	Name: Computer Vision	L-T-P: 3-0-0	Credits: 3			
EC6L029							
Prerequis	i te: Ima	ge & Video Processing					
Introduction to computer vision, geometric camera models, light and shading, local image							
features: SIFT, HOG, texture and shape descriptors, active contour, segmentation, deformable							
models, RANSAC, image registration, learning and classification strategies, image classification,							
object de	tection a	nd recognition, stereopsis, tracking, applications					
Texts/Ref	Texts/References:						

- 1. Forsyth and Ponce, "Computer vision: a modern approach," 2nd Ed., Pearson, 2012.
- 2. Sonka, Hlavac and Boyle, "Digital image processing and computer vision," Cengage learning, 2008.
- 3. Rick Szeliski, "Computer Vision: Algorithms and Applications," Springer, 2011.

The syllabi for other elective courses for dual degree program are same as those of B. Tech. curriculum.

List of Lateral Courses for Other Schools

Subject Name	Code	L-T-P	Credit	Contact Hour	Syllabus Page No.
Lateral – 1 (Any one will be offered)		-			
Transducers, Sensors and Measurement	EE2L002	3-0-0	3	3	59
Introduction to Electromagnetic Engineering	EE2L004	3-0-0	3	3	59-60
Lateral – 2 (Any one will be offered)					
Control System Technology	EE3L005	3-0-0	3	3	60
Signals and Circuits	EE3L006	3-0-0	3	3	
Lateral – 3 (Any one will be offered)					
Soft Computing and Applications	EE3L008	3-0-0	3	3	61
Utilization of Electric Power	EE3L009	3-0-0	3	3	61-62

Syllabus for Lateral Courses (For other schools)

Subject Code:	Name: Transducers, Sensors and Measurement	L-T-P:	Credits:	
EE2L002		3-0-0	3	
Prerequisite: None				

Introduction: Components of a sensor, Types of sensors, Applications; Static characteristics: Static calibration, static error, correction, range, span, accuracy, precision, sensitivity, linearity, hysteresis, dead time, dead zone, resolution, loading effect; Errors: Types of errors, Random errors: mean, variance, Gaussian curve of errors, precision errors and precision index; Dynamic characteristics: Modelling a sensor, zero, first and second order systems; Primary sensing elements: Stain gauge, variable capacitance transducer, variable inductance transducer (LVDT), optical sensors, piezoelectric transducers, hall effect transducer; Mechanical measurements: Measurement of force, pressure, flow, displacement, acceleration, velocity; Temperature measurement: RTD, thermistor and thermocouple; Signal conditioning circuit: Amplifiers, Filters, Bridge circuits, A/D and D/A converters, Modern data acquisition systems.

Text Books:

- E. O. Doebelin, "Measurement System: Application and Design," 5th Ed., McGraw-Hill Education, 2003.
- 2. D. Patranabis, "Principles of industrial instrumentation," 2nd Ed., Tata McGraw-Hill Education, 2001.
- A.K Sawhney, "Electrical and Electronics Measurements and Instrumentation," 19th Ed., Dhanpat Rai & Co., 2011.

Subject Code:	Name: Introduction to Electromagnetic Engineering	L-T-P:	Credits:
EE2L004		3-0-0	3
Prerequisite: N	one		

Introduction: Sources and effects of electromagnetic fields – Vector fields – Different coordinate systems; Vector calculus – Gradient, Divergence and Curl - Divergence theorem – Stoke's theorem; Electrostatics: Coulomb's Law – Electric field intensity – Field due to point and continuous charges – Gauss's law and application – Electric potential – Electric field and equipotential plots – Electric field in free space, conductors, dielectric -Dielectric polarization - Dielectric strength - Electric field in multiple dielectrics – Boundary conditions, Poisson's and Laplace's equations – Capacitance- Energy density; Magnetostatics: Lorentz Law of force, magnetic field intensity – Biot–savart Law - Ampere's Law – Magnetic field due to straight conductors, circular loop, infinite sheet of current – Magnetic field in multiple media – Boundary conditions – Scalar and vector potential – Magnetic force – Torque – Inductance – Energy density – Magnetic circuits; Electrodynamic Fields: Faraday's laws, induced emf – Transformer and motional EMF – Forces and Energy in quasistationary Electromagnetic Fields - Maxwell's equations (differential and integral forms) – Displacement current – Relation between field theory and circuit theory; Electromagnetic

Waves: Generation – Electro Magnetic Wave equations – Wave parameters; velocity, intrinsic impedance, propagation constant – Waves in free space, lossy and lossless dielectrics, conductors-skin depth, Poynting vector – Plane wave reflection and refraction – Transmission lines – Line equations – Input impedances – Standing wave ratio and power.

Text Books:

- 1. Mathew N. O. SADIKU, 'Elements of Electromagnetics', Oxford University press Inc. First India edition, 2007.
- 2. Ashutosh Pramanik, 'Electromagnetism Theory and Applications', Prentice-Hall of India Private Limited, New Delhi, 2006.
- 3. Joseph. A.Edminister, 'Theory and Problems of Electromagnetics', Second edition, Schaum Series, Tata McGraw Hill, 1993.
- 4. William H.Hayt, 'Engineering Electromagnetics', Tata McGraw Hill edition, 2001.
- 5. Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 1999.

Subject Code:	Name: Control System Technology	L-T-P:	Credits:
EE3L005		3-0-0	3
Prerequisite: None			

Introduction to Control Systems: Definition, Examples of control systems, Open loop and closed-loop control systems, Review of Laplace and inverse Laplace transforms; System Modeling: Signal flow graph, Block diagram, Transfer function, Poles and zeros, Block diagram reduction using signal flow graph and block diagram reduction techniques, Mechanical, electrical and electromechanical systems, First and second order models; Control System Components: Introduction, Linear approximation of nonlinear systems, Electrical systems, Stepper motor, Hydraulic systems, Pneumatic systems, Gyroscopes; Transient Response and Steady State Error Analysis: Definitions of transient response parameters, analysis of second order system as prototype, Routh-Hurwitz stability criterion, Classification of systems based on steady state characteristics, Steady state error coefficients; Root Locus Method: Definition of root locus, Properties of root locus, Sketching of root locus, Effect of open loop poles and zeros, Root locus design concepts; Frequency Response Analysis: Bode diagram, Polar plot, Nichols plot, Nyquist stability criterion: nonmathematical description of Nyquist criterion, interpretation of stability, Relative stability – Gain and Phase margin, Closed loop frequency response – M and N contours, Nichols chart; Compensation Techniques: Compensation techniques: lag, lead and lag-lead compensation, PD, PI and PID controllers, Cascade compensation based on root locus method, Introduction to feedback compensation.

Text Books:

- 1. R. Stefani, B. Shahrian, C. Savant & G. Hostetter, "Design of Feedback Control Systems", Oxford University Press, 2002.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall, 1997.
- 3. B. C. Kuo & F. Golnaraghi, "Automatic Control Systems", John Wiley, 2003.
- 4. M. Gopal, "Control Systems: Principles and Designs", 2nd Edition, McGraw Hill, 2002.
- 5. R. C. Dorf & R. H. Bishop, "Modern Control Systems", Prentice Hall, 2000.

Subject Code:	Name: Soft Computing and Applications	L-T-P:	Credits:
EE3L008		3-0-0	3
Prerequisite: None			

Artificial Neural Networks (Theory and Applications): Single and multi-layer artificial neural networks, radial basis function networks, recurrent neural network, functional link artificial neural networks. Fuzzy logic (Theory and applications): Mamdani fuzzy models, T-S fuzzy model, neuro-fuzzy systems, ANFIS. Evolutionary computing (Algorithms and Applications): Genetic algorithms and variants, Differential evolution, Particle swarm optimization (PSO) and variants, Bacterial foraging optimization (BFO), Ant colony optimization - travelling salesman problem, Artificial immune systems, cat swarm optimization. Multi-objective evolutionary algorithms: NSGA –II, multi-objective PSO and variants.

Text Books:

- 1. S. Haykin, 'Neural Networks and Learning Machines', Prentice Hall, 2009.
- 2. Y.H. Pao, 'Adaptive pattern recognition and neural networks', Addison-Wesley, 1989.
- 3. Rich, E., Knight, K. and Nair, S.B., 'Artificial Intelligence', 3rd Ed., Tata McGraw Hill. 2009
- 4. Deb, K., 'Optimization for Engineering Design Algorithms and Examples', Prentice Hall of India. 2009.
- 5. Jang, J.S.R., Sun, C.T. and Mizutani, E., 'Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence', Prentice Hall, 2009.
- 6. Hagan, M., 'Neural Network Design', Nelson Candad, 2008.
- 7. K.A.D. Jong, 'Evolutionary Computation A Unified Approach', PHI Learning, 2009.

Subject Code:	Name: Utilization of Electric Power	L-T-P:	Credits:
EE3L009		3-0-0	3
Prereguisite: El	ectrical Technology		

Electric Drives: Advantages of electric drives, Types of motors used in electric drive, Electric braking; Illumination: Definition: Luminous flux, solid angle, luminous intensity, illumination, luminous, efficiency, depreciation factor, coefficient, of utilization, space to height ratio, reflection factor, glare, shadow, lux. Laws of illumination. Different type of lamps, construction and working of in candescent and dischage lamps – their characteristics. Calculation of number of light points for interior illumination; Electric Heating: Advantages of electrical heating, Heating methods- Resistance heating, Induction heating; Electric arc heating, Dielectric heating; Electric Welding: Advantages of electric welding, Welding method, Principles of resistance welding, Principle of arc production, electric arc welding; Electrolytic Processes: Need of electro-deposition, Laws of electrolysis, process of electro-deposition - clearing, operation, deposition of metals, polishing, buffing, Equipment and accessories for electroplating; Electric Traction: Advantages of electric traction, Different systems of electric traction, DC and AC systems, diesel electric system, types of services – urban, sub-urban, and main lines and their speed-time curves, Different accessories for track electrification; such as overhead capacitor wire, conductor rail system, current collector-pantograph.

Text Books:

- 1. J B Gupta, "Utilization of Electrical Energy and Traction", Kataria Publications, 2014.
- 2. O E Taylor, "Utilization of Electrical Energy", University Press-Hyderabad, 1981.
- 3. G. C. Garg, "Utilization of Electric Power and Electric Traction" Khanna Publishers, 2004.
- 4. Sivanagaraju "Generation and Utilization of Electrical Energy", Pearson India, 2010.

Summary of Course Credits: (B. Tech. in Electrical Engineering)

Subject Name	Code	L-T-P	Credit
SEMESTER I			
Mathematics-1	MA1L001	3-1-0	4
Physics/	PH1L001/	310	4
Chemistry	CY1L001	5-1-0	4
Mechanics / English for Communications or	ME1L001/	3-1-0/	
Learning English	HS1L001	3-0-2 or	4
	or HS1L002	3-1-0	
Electrical Technology / Introduction to	EE1L001/		Δ
Programing and Data Structures	CS1L001	3-1-0	-
Introduction to Manufacturing Processes /	ME1P001/	0-0-3/	2/3
Engineering Drawing and Graphics	CE1P001	1-0-3	2/5
Physics Laboratory/ Chemistry Laboratory	PH1P001/ CY1P001	0-0-3	2
Electrical Technology Laboratory /	EE1D001/		
Introduction to Programing and Data	CS1D001	0-0-3	2
Structures Laboratory	CSIP001		
Extra Academic Activity-1	ID1T001	0-0-3	1
		Total	22/23+1
SEMES	STER II		
Mathematics-2	MA1L002	3-1-0	4
Chemistry/	CY1L001/	2.1.0	4
Physics	PH1L001	3-1-0	4
English for Communication or Learning	HS1L001 or	3-0-2 or	
English / Machanics	HS 1L002/	3-1-0/	4
English / Mechanics	ME1L001	3-1-0	
Introduction to Programming and Data	CS1L001/	3-1-0	4
Structures/ Electrical Technology	EE1L001	5-1-0	
Engineering Drawing and Graphics /	CE1P001/	1-0-3/	3/2
Introduction to Manufacturing Processes	ME1P001	0-0-3	
Chemistry Laboratory/ Physics Laboratory	CY1P001/	0-0-3	2
Electrical Technology Laboratory /	PHIP001		
Introduction to Programing and Data	EE1P001/	0.0.3	2
Structures Laboratory	CS1P001	0-0-5	2
Extra Academic Activity -2	ID1T002	0-0-3	1
		Total	23/22+1
SEMES	TED III		
SENIES		I	1
Breadth – 1		3-0-0	3
Introduction to Electronics	EC2L001	3-1-0	4
Introduction to Material Science and	ID2L001	2-0-0	2
Engineering			
Introduction to Bio Science and Technology	ID2L002	2-0-0	2
Probability Statistics and Stochastic	MA2L003	3-1-0	4
Signals and Systems	FC21002	3-1-0	4
Introduction to Electronics Laboratory	FC2P001	0-0-3	
Signals and Systems Laboratory	FC2P001	0-0-3	2
Seminar	EE2COO1	0.0.3	2
Seminar	EEZJUUI		2
		Total	23

SEMESTER IV					
Lateral -1		3-0-0/3-1-0	3/4		
Breadth – 2		3-0-0/3-1-0	3/4		
Environmental Science Technology and	ID2L003	2-0-0	2		
Management					
Network Theory	EE2L001	3-1-0	4		
Electric Machines	EE2L003	3-1-0	4		
Digital Electronics and Microprocessor	EC2L006	3-1-0	4		
Electric Machines Laboratory	EE2P001	0-0-3	2		
Digital Electronics and Microprocessor	EC2P006	0-0-3	2		
Laboratory	2021 000	005	2		
r		Total	24/25		
SEM	IESTER V				
Lateral - 2		3-0-0/3-1-0	3/4		
Breadth - 3		3-0-0	3		
Power Electronics	EE3L004	3-1-0	4		
Electrical Power Transmission and	EE3L007	3-1-0	4		
Distribution					
Measurement and Instrumentation	EE3L010	3-0-0	3		
Electromagnetic Field Theory	EE3L011	3-0-0	3		
Power Electronics Laboratory	EE3P004	0-0-3	2		
Measurement and Instrumentation	FE3P005	0-0-3	2		
Laboratory		Total	24/25		
		Total	24/25		
SEM	ESTER VI				
Lateral -3		3-0-0/3-1-0	3/4		
Breadth – 4		3-0-0/3-1-0	3/4		
Control Systems	EE3L003	3-1-0	4		
Digital Signal Processing	EC3L003	3-1-0	4		
Power System Operation and Control	EE3L012	3-1-0	4		
Control Systems Laboratory	EE3P003	0-0-3	2		
Digital Signal Processing Laboratory	EC3P002	0-0-3	2		
Power Systems Laboratory	EE3P006	0-0-3	2		
		Total	24/26		
SEMESTER VII					
Digital Control Systems	EE4L005	3-0-0	3		
Renewable Energy Systems	EE4L006	3-0-0	3		
Elective – 1		3-0-0	3		
Elective – 2		3-0-0	3		
Industrial Training Defence	EE4T001		2		
Project- Part 1	EE4D001	0-0-6	4		
		Total	18		
SEMI	LOTER VIII				
Elective – 3		3-0-0	3		
Elective – 4		3-0-0	3		
Elective – 5		3-0-0	3		
Elective – 6	FF 40000	3-0-0	3		
Project Part 1		0-0-3	2		
		U-U-9	20		
		Grand Total	175-180		
	1				

Summary of Course Credits: (B. Tech. in Electrical Engineering + M. Tech. in Power Electronics and Drives)

Subject Name	Code	L-T-P	Credit
SEME	STER I		
Mathematics-1	MA1L001	3-1-0	4
Physics/	PH1L001/	210	4
Chemistry	CY1L001	5-1-0	4
Machanics / English for Communications or	ME1L001/	3-1-0/	
Learning English	HS1L001	3-0-2 o	r 4
	or HS1L002	3-1-0	
Electrical Technology / Introduction to	EE1L001/		4
Programing and Data Structures	CS1L001	3-1-0	4
Introduction to Manufacturing Processes /	ME1P001/	0-0-3/	2/3
Engineering Drawing and Graphics	CE1P001	1-0-3	2/3
Physics Laboratory/ Chemistry Laboratory	PH1P001/	0-0-3	2
Thysics Eaboratory, Chemistry Eaboratory	CY1P001	005	2
Electrical Technology Laboratory /	EE1P001/		
Introduction to Programing and Data	CS1P001	0-0-3	2
Structures Laboratory			
Extra Academic Activity-1	ID1T001	0-0-3	1
		Total	22/23+1
	STER II	_	
Mathematics-2	MA1L002	3-1-0	4
Chemistry/	CY1L001/	3-1-0	4
Physics	PH1L001	010	
English for Communication or Learning	HS1L001 or	3-0-2 or	
English / Mechanics	HS 1L002/	3-1-0/	4
	MEIL001	3-1-0	
Introduction to Programming and Data	CS1L001/	3-1-0	4
Structures/ Electrical Technology	CE1D001/	1.0.2/	
Introduction to Manufacturing Processos	CEIP001/ ME1D001	1-0-3/	3/2
Introduction to Manufacturing Processes		0-0-3	
Chemistry Laboratory/ Physics Laboratory	PH1P001	0-0-3	2
Flectrical Technology Laboratory /	11111001		
Introduction to Programing and Data	EE1P001/	0-0-3	2
Structures Laboratory	CS1P001	005	-
Extra Academic Activity -2	ID1T002	0-0-3	1
		Total	23/22+1
SEMES	STER III	•	
Breadth – 1		3-0-0	3
Introduction to Electronics	EC2L001	3-1-0	4
Introduction to Material Science and	ID2L001	2-0-0	2
Engineering			
Introduction to Bio Science and Technology	ID2L002	2-0-0	2
Probability Statistics and Stochastic	MA2L003	3-1-0	4
Processes			
Signals and Systems	EC2L002	3-1-0	4
Introduction to Electronics Laboratory	EC2P001	0-0-3	2
Signals and Systems Laboratory	EC2P002	0-0-3	2
Seminar	EE2S001	0-0-3	2
		Total	25

SEMESTER IV					
Lateral -1 3-0-0/3-1-0 3/4					
eadth – 2 3-0-0/3-1-0		3/4			
Environmental Science Technology and	ID2L003	2-0-0	2		
Management					
Network Theory	EE2L001	3-1-0	4		
Electric Machines	EE2L003	3-1-0	4		
Digital Electronics and Microprocessor	EC2L006	3-1-0	4		
Electric Machines Laboratory	EE2P001	0-0-3	2		
Digital Electronics and Microprocessor Laboratory	EC2P006	0-0-3	2		
		Total	24/25		
SEMESTI	ER V	· · · · · · · · · · · · · · · · · · ·			
Lateral - 2		3-0-0/3-1-0	3/4		
Breadth - 3		3-0-0	3		
Power Electronics	EE3L004	3-1-0	4		
Electrical Power Transmission and Distribution	EE3L007	3-1-0	4		
Measurement and Instrumentation	EE3L010	3-0-0	3		
Electromagnetic Field Theory	EE3L011	3-0-0	3		
Power Electronics Laboratory	EE3P004	0-0-3	2		
Measurement and Instrumentation Laboratory	EE3P005	0-0-3	2		
		lotal	24/25		
SEMESTE	CR VI				
Lateral -3		3-0-0/3-1-0	3/4		
Breadth – 4		3-0-0/3-1-0	3/4		
Control Systems	EE3L003	3-1-0	4		
Digital Signal Processing	EC3L003	3-1-0	4		
Power System Operation and Control	EE3L012	3-1-0	4		
Control Systems Laboratory	EE3P003	0-0-3	2		
Digital Signal Processing Laboratory	EC3P002	0-0-3	2		
Power Systems Laboratory	EE3P006	0-0-3	2		
		Total	24/26		
SEMESTE	R VII				
Switched Mode Power Conversion	EE6L051	3-1-0	4		
Digital Control Systems	EE4L005	3-0-0	3		
Renewable Energy Systems	EE4L006	3-0-0	3		
Theory and Analysis of Electric Drives	EE6L052	3-1-0	4		
Switched Mode Power Conversion Laboratory	EE6P052	0-0-3	2		
Industrial Training Defence	EE4T001	0-0-0	2		
Project- Part 1	EE4D001	0-0-6	4		
		Total	22		
SEMESTER VIII					
Advanced Power Electronic Converters	EE6L053	3-0-0	3		
Advanced Machine Drives	EE6L055	3-1-0	4		
Grid Integration of Renewable Energy Systems	EE6L013	3-0-0	3		
Power Converter and Electric Drives Laboratory	EE6P053	0-0-3	2		
Renewable Energy Systems Laboratory	EE4P002	0-0-3	2		
Project- Part 2	EE4D002	0-0-9	6		
		Total	20		

SEMESTER IX			
Elective I		3-0-0	3
Elective II		3-0-0/3-1-0	3/4
Power Electronics System Simulation	EE6P051	0-0-3	2
Laboratory			
Thesis Part I	EE6D051	0-0-0	12
		Total	20/21
SEME	STER X		
Elective III		3-0-0/3-1-0	3/4
Thesis Part II	EE6D053	0-0-0	13
		Total	16/17
		Grand	220-228
		Total	