Fundamentals of normed linear spaces: Normed linear spaces, Riesz lemma, characterization of finite dimensional spaces, Banach spaces. Bounded linear maps on a normed linear spaces: Examples, linear map on finite dimensional spaces, finite dimensional spaces are isomorphic, operator norm. Hahn-Banach theorems: Geometric and extension forms and their applications. Three main theorems on Banach spaces: Uniform boundedness principle, divergence of Fourier series, closed graph theorem, projection, open mapping theorem, comparable norms. Dual spaces and adjoint of an operator: Duals of classical spaces, weak and weak* convergence, Banach Alaoglu theorem, adjoint of an operator. Hilbert spaces : Inner product spaces, orthonormal set, Gram-Schmidt ortho-normalization, Bessel’s inequality, Orthonormal basis, Separable Hilbert spaces. Projection and Riesz representation theorem: Orthonormal complements, orthogonal projections, projection theorem, Riesz representation theorem. Bounded operators on Hilbert spaces: Adjoint, normal, unitary, self adjoint operators, compact operators, eigen values, eigen vectors, Banach algebras. Spectral theorem: Spectral theorem for compact self adjoint operators, statement of spectral theorem for bounded self adjoint operators. |